Nuprl Lemma : groupoid-inv_wf
∀[G:Groupoid]. ∀[x,y:cat-ob(cat(G))]. ∀[x_y:cat-arrow(cat(G)) x y].  (groupoid-inv(G;x;y;x_y) ∈ cat-arrow(cat(G)) y x)
Proof
Definitions occuring in Statement : 
groupoid-inv: groupoid-inv(G;x;y;x_y)
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
pi2: snd(t)
, 
pi1: fst(t)
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
groupoid-inv: groupoid-inv(G;x;y;x_y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
groupoid_wf, 
cat-ob_wf, 
groupoid-cat_wf, 
cat-arrow_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
applyEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[G:Groupoid].  \mforall{}[x,y:cat-ob(cat(G))].  \mforall{}[x$_{y}$:cat-arrow(cat(G))  x  y].
    (groupoid-inv(G;x;y;x$_{y}$)  \mmember{}  cat-arrow(cat(G))  y  x)
Date html generated:
2020_05_20-AM-07_55_14
Last ObjectModification:
2015_12_28-PM-02_22_52
Theory : small!categories
Home
Index