Nuprl Lemma : callbyvalueall-single-sqle2
∀[F,G:Base]. ∀[a:Top].  let x ⟵ [a] in G[x] ≤ let x ⟵ a in F[x] supposing ∀b:Base. (G[[b]] ≤ F[b])
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
nil: []
, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
top: Top
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
has-valueall_wf_base, 
evalall-sqequal, 
cbv_sqle, 
callbyvalueall-single, 
top_wf, 
sqle_wf_base, 
base_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
because_Cache, 
isect_memberFormation, 
introduction, 
axiomSqleEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
sqleRule, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
sqleReflexivity
Latex:
\mforall{}[F,G:Base].  \mforall{}[a:Top].    let  x  \mleftarrow{}{}  [a]  in  G[x]  \mleq{}  let  x  \mleftarrow{}{}  a  in  F[x]  supposing  \mforall{}b:Base.  (G[[b]]  \mleq{}  F[b])
Date html generated:
2016_05_15-PM-02_08_56
Last ObjectModification:
2016_01_15-PM-10_21_34
Theory : untyped!computation
Home
Index