Nuprl Lemma : callbyvalueall_seq-lambdas-all0
∀[L,G,H,F:Top]. ∀[m:ℕ].
  (callbyvalueall_seq(L;λx.x;λg.(F[λf.G[f]] H[g]);0;m) 
  ~ callbyvalueall_seq(L;λx.x;λg.(F[λf.(g mk_lambdas(G[f];m))] H[g]);0;m))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m)
, 
callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
mk_applies: mk_applies(F;G;m)
Lemmas referenced : 
top_wf, 
nat_wf, 
primrec0_lemma, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
false_wf, 
callbyvalueall_seq-lambdas-all
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[L,G,H,F:Top].  \mforall{}[m:\mBbbN{}].
    (callbyvalueall\_seq(L;\mlambda{}x.x;\mlambda{}g.(F[\mlambda{}f.G[f]]  H[g]);0;m) 
    \msim{}  callbyvalueall\_seq(L;\mlambda{}x.x;\mlambda{}g.(F[\mlambda{}f.(g  mk\_lambdas(G[f];m))]  H[g]);0;m))
Date html generated:
2016_05_15-PM-02_14_08
Last ObjectModification:
2016_01_15-PM-10_17_59
Theory : untyped!computation
Home
Index