Nuprl Lemma : callbyvalueall_seq-lambdas-all0

[L,G,H,F:Top]. ∀[m:ℕ].
  (callbyvalueall_seq(L;λx.x;λg.(F[λf.G[f]] H[g]);0;m) 
  callbyvalueall_seq(L;λx.x;λg.(F[λf.(g mk_lambdas(G[f];m))] H[g]);0;m))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) nat: uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a lambda: λx.A[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] mk_applies: mk_applies(F;G;m)
Lemmas referenced :  top_wf nat_wf primrec0_lemma lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf callbyvalueall_seq-lambdas-all
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll because_Cache isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[L,G,H,F:Top].  \mforall{}[m:\mBbbN{}].
    (callbyvalueall\_seq(L;\mlambda{}x.x;\mlambda{}g.(F[\mlambda{}f.G[f]]  H[g]);0;m) 
    \msim{}  callbyvalueall\_seq(L;\mlambda{}x.x;\mlambda{}g.(F[\mlambda{}f.(g  mk\_lambdas(G[f];m))]  H[g]);0;m))



Date html generated: 2016_05_15-PM-02_14_08
Last ObjectModification: 2016_01_15-PM-10_17_59

Theory : untyped!computation


Home Index