Nuprl Lemma : callbyvalueall_seq-partial-ap-all0
∀[L,F:Top]. ∀[m:ℕ]. (callbyvalueall_seq(L;λx.x;F;0;m) ~ callbyvalueall_seq(L;λx.x;λg.(F partial_ap(g;m;m));0;m))
Proof
Definitions occuring in Statement :
partial_ap: partial_ap(g;n;m)
,
callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
lambda: λx.A[x]
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
nat: ℕ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
mk_applies: mk_applies(F;G;m)
Lemmas referenced :
top_wf,
nat_wf,
primrec0_lemma,
lelt_wf,
int_formula_prop_wf,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformle_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_properties,
false_wf,
callbyvalueall_seq-partial-ap-all
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
sqequalRule,
lambdaFormation,
hypothesis,
setElimination,
rename,
dependent_functionElimination,
addEquality,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
computeAll,
sqequalAxiom,
because_Cache
Latex:
\mforall{}[L,F:Top]. \mforall{}[m:\mBbbN{}].
(callbyvalueall\_seq(L;\mlambda{}x.x;F;0;m) \msim{} callbyvalueall\_seq(L;\mlambda{}x.x;\mlambda{}g.(F partial\_ap(g;m;m));0;m))
Date html generated:
2016_05_15-PM-02_14_00
Last ObjectModification:
2016_01_15-PM-10_18_40
Theory : untyped!computation
Home
Index