Nuprl Lemma : less_as_ite
∀[a,b,x,y:Top]. (if (x) < (y) then a else b ~ if x <z y then a else b fi )
Proof
Definitions occuring in Statement :
ifthenelse: if b then t else f fi
,
lt_int: i <z j
,
uall: ∀[x:A]. B[x]
,
top: Top
,
less: if (a) < (b) then c else d
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
lt_int: i <z j
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
it: ⋅
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
,
uimplies: b supposing a
,
strict4: strict4(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
guard: {T}
,
or: P ∨ Q
,
squash: ↓T
Lemmas referenced :
lifting-strict-less,
top_wf,
equal_wf,
has-value_wf_base,
base_wf,
is-exception_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
baseClosed,
isect_memberEquality,
voidElimination,
voidEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
callbyvalueDecide,
hypothesis,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
unionEquality,
unionElimination,
sqleReflexivity,
dependent_functionElimination,
independent_functionElimination,
baseApply,
closedConclusion,
decideExceptionCases,
inrFormation,
because_Cache,
imageMemberEquality,
imageElimination,
exceptionSqequal,
inlFormation,
sqequalAxiom
Latex:
\mforall{}[a,b,x,y:Top]. (if (x) < (y) then a else b \msim{} if x <z y then a else b fi )
Date html generated:
2017_10_01-AM-08_39_20
Last ObjectModification:
2017_07_26-PM-04_27_26
Theory : untyped!computation
Home
Index