Nuprl Lemma : mk_lambdas_fun_compose2
∀[f:Top]. ∀[m:ℕ]. ∀[n:ℕm + 1].
  (mk_lambdas_fun(λh,x. (h mk_lambdas_fun(f;n));m) ~ mk_lambdas_fun(λg.mk_lambdas_fun(λh,x. (h (f g));m - n);n))
Proof
Definitions occuring in Statement : 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
mk_lambdas: mk_lambdas(F;m)
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
mk_lambdas_fun_compose1, 
false_wf, 
le_wf, 
primrec1_lemma, 
int_seg_wf, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalAxiom, 
addEquality, 
setElimination, 
rename, 
because_Cache
Latex:
\mforall{}[f:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_lambdas\_fun(\mlambda{}h,x.  (h  mk\_lambdas\_fun(f;n));m) 
    \msim{}  mk\_lambdas\_fun(\mlambda{}g.mk\_lambdas\_fun(\mlambda{}h,x.  (h  (f  g));m  -  n);n))
Date html generated:
2016_05_15-PM-02_11_33
Last ObjectModification:
2015_12_27-AM-00_34_38
Theory : untyped!computation
Home
Index