Nuprl Lemma : mk_lambdas_fun_compose1
∀[f:Top]. ∀[k,m:ℕ]. ∀[n:ℕm + 1].
  (mk_lambdas_fun(λh.mk_lambdas(h mk_lambdas_fun(f;n);k);m) 
  ~ mk_lambdas_fun(λg.mk_lambdas_fun(λh.mk_lambdas(h (f g);k);m - n);n))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
mk_lambdas-fun: mk_lambdas-fun(F;G;n;m)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
Lemmas referenced : 
int_seg_properties, 
nat_wf, 
le_wf, 
int_seg_wf, 
top_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
base_wf, 
btrue_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
le_int_wf, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
mk_lambdas_fun-unroll-first, 
decidable__lt, 
false_wf, 
not-lt-2, 
le_antisymmetry_iff, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
zero-add, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
add-zero, 
subtract-add-cancel
Rules used in proof : 
cut, 
sqequalRule, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
hypothesis_subsumption, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
intWeakElimination, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
promote_hyp, 
cumulativity, 
applyEquality, 
minusEquality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[f:Top].  \mforall{}[k,m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_lambdas\_fun(\mlambda{}h.mk\_lambdas(h  mk\_lambdas\_fun(f;n);k);m) 
    \msim{}  mk\_lambdas\_fun(\mlambda{}g.mk\_lambdas\_fun(\mlambda{}h.mk\_lambdas(h  (f  g);k);m  -  n);n))
Date html generated:
2017_10_01-AM-08_40_56
Last ObjectModification:
2017_07_26-PM-04_28_18
Theory : untyped!computation
Home
Index