Nuprl Lemma : equal-p-adics
∀[p:ℕ+]. ∀[x,y:p-adics(p)].  uiff(x = y ∈ p-adics(p);x = y ∈ (ℕ+ ⟶ ℤ))
Proof
Definitions occuring in Statement : 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
p-adics: p-adics(p)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
p-adics-subtype, 
subtype_rel_dep_function, 
nat_plus_wf, 
int_seg_wf, 
exp_wf2, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
equal_functionality_wrt_subtype_rel2, 
decidable__lt, 
istype-less_than, 
int_seg_properties, 
exp_wf_nat_plus, 
respects-equality-function, 
subtype-base-respects-equality, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
eqmod_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
p-adics_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
setElimination, 
rename, 
applyLambdaEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality_alt, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
inhabitedIsType, 
because_Cache, 
intEquality, 
lambdaFormation_alt, 
functionEquality, 
equalityIstype, 
functionExtensionality_alt, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
productIsType, 
functionIsType, 
addEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:p-adics(p)].    uiff(x  =  y;x  =  y)
Date html generated:
2019_10_15-AM-10_34_19
Last ObjectModification:
2018_12_08-AM-11_57_07
Theory : rings_1
Home
Index