Nuprl Lemma : equal-p-adics

[p:ℕ+]. ∀[x,y:p-adics(p)].  uiff(x y ∈ p-adics(p);x y ∈ (ℕ+ ⟶ ℤ))


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a p-adics: p-adics(p) squash: T so_lambda: λ2x.t[x] nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k respects-equality: respects-equality(S;T)
Lemmas referenced :  p-adics-subtype subtype_rel_dep_function nat_plus_wf int_seg_wf exp_wf2 nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le equal_functionality_wrt_subtype_rel2 decidable__lt istype-less_than int_seg_properties exp_wf_nat_plus respects-equality-function subtype-base-respects-equality set_subtype_base lelt_wf int_subtype_base eqmod_wf itermAdd_wf int_term_value_add_lemma p-adics_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation setElimination rename applyLambdaEquality sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality_alt natural_numberEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType inhabitedIsType because_Cache intEquality lambdaFormation_alt functionEquality equalityIstype functionExtensionality_alt applyEquality equalityTransitivity equalitySymmetry productElimination productIsType functionIsType addEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:p-adics(p)].    uiff(x  =  y;x  =  y)



Date html generated: 2019_10_15-AM-10_34_19
Last ObjectModification: 2018_12_08-AM-11_57_07

Theory : rings_1


Home Index