Nuprl Lemma : int_pi_det_fun_wf
∀[i:ℤ]. ((i)ℤ-det-fun ∈ detach_fun(|ℤ-rng|;(i)ℤ-rng))
Proof
Definitions occuring in Statement : 
int_pi_det_fun: (i)ℤ-det-fun
, 
int_ring: ℤ-rng
, 
princ_ideal: (a)r
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_ring: ℤ-rng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
int_pi_det_fun: (i)ℤ-det-fun
, 
princ_ideal: (a)r
, 
detach_fun: detach_fun(T;A)
, 
rng_times: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
eqtt_to_assert, 
assert_of_eq_int, 
all_wf, 
iff_wf, 
exists_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
div_rem_sum, 
nequal_wf, 
mul-commutes, 
squash_wf, 
true_wf, 
divide-exact, 
iff_weakening_equal, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
multiply-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
remainderEquality, 
intEquality, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
functionExtensionality, 
axiomEquality, 
independent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
addLevel, 
impliesFunctionality, 
divideEquality, 
multiplyEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality, 
pointwiseFunctionality, 
rename
Latex:
\mforall{}[i:\mBbbZ{}].  ((i)\mBbbZ{}-det-fun  \mmember{}  detach\_fun(|\mBbbZ{}-rng|;(i)\mBbbZ{}-rng))
Date html generated:
2017_10_01-AM-08_18_40
Last ObjectModification:
2017_02_28-PM-02_03_32
Theory : rings_1
Home
Index