Nuprl Lemma : int_pi_det_fun_wf

[i:ℤ]. ((i)ℤ-det-fun ∈ detach_fun(|ℤ-rng|;(i)ℤ-rng))


Proof




Definitions occuring in Statement :  int_pi_det_fun: (i)ℤ-det-fun int_ring: -rng princ_ideal: (a)r rng_car: |r| detach_fun: detach_fun(T;A) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_ring: -rng rng_car: |r| pi1: fst(t) int_pi_det_fun: (i)ℤ-det-fun princ_ideal: (a)r detach_fun: detach_fun(T;A) rng_times: * pi2: snd(t) infix_ap: y all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top int_nzero: -o nequal: a ≠ b ∈  squash: T true: True
Lemmas referenced :  eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int eqtt_to_assert assert_of_eq_int all_wf iff_wf exists_wf equal-wf-base int_subtype_base assert_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf div_rem_sum nequal_wf mul-commutes squash_wf true_wf divide-exact iff_weakening_equal add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf multiply-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination remainderEquality intEquality applyEquality baseApply closedConclusion baseClosed functionExtensionality axiomEquality independent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll addLevel impliesFunctionality divideEquality multiplyEquality imageElimination universeEquality equalityUniverse levelHypothesis imageMemberEquality hyp_replacement applyLambdaEquality pointwiseFunctionality rename

Latex:
\mforall{}[i:\mBbbZ{}].  ((i)\mBbbZ{}-det-fun  \mmember{}  detach\_fun(|\mBbbZ{}-rng|;(i)\mBbbZ{}-rng))



Date html generated: 2017_10_01-AM-08_18_40
Last ObjectModification: 2017_02_28-PM-02_03_32

Theory : rings_1


Home Index