Nuprl Lemma : int_pi_det_fun_wf
∀[i:ℤ]. ((i)ℤ-det-fun ∈ detach_fun(|ℤ-rng|;(i)ℤ-rng))
Proof
Definitions occuring in Statement : 
int_pi_det_fun: (i)ℤ-det-fun, 
int_ring: ℤ-rng, 
princ_ideal: (a)r, 
rng_car: |r|, 
detach_fun: detach_fun(T;A), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_ring: ℤ-rng, 
rng_car: |r|, 
pi1: fst(t), 
int_pi_det_fun: (i)ℤ-det-fun, 
princ_ideal: (a)r, 
detach_fun: detach_fun(T;A), 
rng_times: *, 
pi2: snd(t), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
true: True
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
eqtt_to_assert, 
assert_of_eq_int, 
all_wf, 
iff_wf, 
exists_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
div_rem_sum, 
nequal_wf, 
mul-commutes, 
squash_wf, 
true_wf, 
divide-exact, 
iff_weakening_equal, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
multiply-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
remainderEquality, 
intEquality, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
functionExtensionality, 
axiomEquality, 
independent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
addLevel, 
impliesFunctionality, 
divideEquality, 
multiplyEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality, 
pointwiseFunctionality, 
rename
Latex:
\mforall{}[i:\mBbbZ{}].  ((i)\mBbbZ{}-det-fun  \mmember{}  detach\_fun(|\mBbbZ{}-rng|;(i)\mBbbZ{}-rng))
 Date html generated: 
2017_10_01-AM-08_18_40
 Last ObjectModification: 
2017_02_28-PM-02_03_32
Theory : rings_1
Home
Index