Nuprl Lemma : csm-cubical-path-0-subtype2
∀[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Delta(I+i)].
∀[phi:𝔽(I)]. ∀[u1,u2:{I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}].
  cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1) ⊆r cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u2) 
  supposing u1 = u2 ∈ {I+i,s(phi) ⊢ _:((A)sigma)<rho> o iota}
Proof
Definitions occuring in Statement : 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-s: s
, 
add-name: I+i
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
Lemmas referenced : 
csm-cubical-path-0-subtype, 
cubical-path-0_wf, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
csm-ap_wf, 
squash_wf, 
true_wf, 
equal_wf, 
csm-ap-comp-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm-comp-context-map, 
istype-universe, 
sq_stable__subtype_rel, 
subtype_rel_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
universeIsType, 
instantiate, 
because_Cache, 
equalityIstype, 
inhabitedIsType, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination, 
universeEquality, 
hyp_replacement
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Delta(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u1,u2:\{I+i,s(phi)  \mvdash{}  \_:((A)sigma)<rho>  o  iota\}].
    cubical-path-0(Delta;(A)sigma;I;i;rho;phi;u1)  \msubseteq{}r  cubical-path-0(Gamma;A;I;i;(sigma)rho;phi;u2) 
    supposing  u1  =  u2
Date html generated:
2020_05_20-PM-03_48_01
Last ObjectModification:
2020_04_09-PM-02_33_11
Theory : cubical!type!theory
Home
Index