Nuprl Lemma : csm-trans-equiv-path
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((trans-equiv-path(G;A;B;f))s = trans-equiv-path(H;(A)s;(B)s;(f)s) ∈ {H ⊢ _:(decode((A)s) ⟶ decode((B)s))})
Proof
Definitions occuring in Statement : 
trans-equiv-path: trans-equiv-path(G;A;B;f), 
universe-decode: decode(t), 
cubical-universe: c𝕌, 
cubical-equiv: Equiv(T;A), 
cubical-fun: (A ⟶ B), 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
trans-equiv-path: trans-equiv-path(G;A;B;f), 
all: ∀x:A. B[x], 
let: let, 
csm-comp-structure: (cA)tau, 
cc-fst: p, 
interval-type: 𝕀, 
csm-comp: G o F, 
compose: f o g, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
squash: ↓T, 
prop: ℙ, 
true: True, 
implies: P ⇒ Q, 
csm-ap-type: (AF)s, 
csm+: tau+, 
universe-decode: decode(t), 
csm-ap: (s)x, 
cubical-term-at: u(a), 
cc-snd: q, 
csm-adjoin: (s;u), 
pi1: fst(t), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
universe-comp-fun: CompFun(A), 
universe-comp-op: compOp(t), 
comp-op-to-comp-fun: cop-to-cfun(cA), 
csm-composition: (comp)sigma, 
csm-ap-term: (t)s, 
pi2: snd(t)
Lemmas referenced : 
csm-ap-term-universe, 
universe-decode_wf, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cc-fst_wf, 
cubical-equiv-p, 
cubical-term-eqcd, 
cc-snd_wf, 
cube_set_map_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
csm-ap-type_wf, 
csm-comp-structure_wf, 
universe-comp-fun_wf, 
subtype_rel_self, 
composition-structure_wf, 
csm-cubical-lam, 
transprt-const_wf, 
cubical-app_wf_fun, 
equiv-fun_wf, 
cube_set_map_cumulativity-i-j, 
cubical-lam_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
csm-universe-decode, 
csm-comp-structure_wf2, 
csm-cubical-equiv, 
csm-equiv-fun, 
cubical-fun_wf, 
csm-cubical-fun, 
equal_wf, 
istype-universe, 
cubical-term_wf, 
csm-transprt-const, 
csm+_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
iff_weakening_equal, 
subtype_rel-equal, 
csm-cubical-app
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
inhabitedIsType, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :memTop, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
universeEquality, 
productElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((trans-equiv-path(G;A;B;f))s  =  trans-equiv-path(H;(A)s;(B)s;(f)s))
Date html generated:
2020_05_20-PM-07_40_18
Last ObjectModification:
2020_05_02-PM-08_00_36
Theory : cubical!type!theory
Home
Index