Nuprl Lemma : csm-transprt-fun
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 +⊢ Compositon(A)]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((transprt-fun(Gamma;A;cA))s = transprt-fun(H;(A)s+;(cA)s+) ∈ {H ⊢ _:(((A)s+)[0(𝕀)] ⟶ ((A)s+)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
transprt-fun: transprt-fun(Gamma;A;cA), 
csm-comp-structure: (cA)tau, 
composition-structure: Gamma ⊢ Compositon(A), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm+: tau+, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
all: ∀x:A. B[x], 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cubical-type: {X ⊢ _}, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap-type: (AF)s, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
interval-1: 1(𝕀), 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
csm-comp-structure: (cA)tau, 
transprt-fun: transprt-fun(Gamma;A;cA), 
cubical-lam: cubical-lam(X;b), 
csm-ap-term: (t)s
Lemmas referenced : 
csm+_wf, 
interval-type_wf, 
cube_set_map_cumulativity-i-j, 
csm-interval-type, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
csm-cubical-fun, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
csm-id-adjoin_wf-interval-1, 
cubical-fun_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cubical-term-eqcd, 
csm-ap-term_wf, 
transprt-fun_wf, 
cubical-type-cumulativity2, 
composition-structure_wf, 
csm-comp-structure_wf, 
cubical-fun-as-cubical-pi, 
csm-cubical-lambda, 
cc-fst_wf, 
cube_set_map_wf, 
cubical_set_wf, 
transprt_wf, 
csm+_wf_interval, 
subtype_rel-equal, 
cc-snd_wf, 
cubical-lam_wf, 
istype-cubical-term, 
csm-transprt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
sqequalRule, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
setElimination, 
rename, 
cumulativity, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
applyLambdaEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  +\mvdash{}  Compositon(A)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((transprt-fun(Gamma;A;cA))s  =  transprt-fun(H;(A)s+;(cA)s+))
Date html generated:
2020_05_20-PM-04_38_49
Last ObjectModification:
2020_04_18-PM-02_24_11
Theory : cubical!type!theory
Home
Index