Nuprl Lemma : nc-0-comp-s

[I,K:fset(ℕ)]. ∀[i:ℕ]. ∀[f:K ⟶ I+i].  (i0) ⋅ s ⋅ f ∈ K ⟶ I+i supposing (f i) 0 ∈ Point(dM(K))


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nc-0: (i0) nh-comp: g ⋅ f names-hom: I ⟶ J dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s] all: x:A. B[x] names: names(I) nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q top: Top sq_type: SQType(T) squash: T dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True nequal: a ≠ b ∈  nc-s: s
Lemmas referenced :  names_wf add-name_wf equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM0_wf names-hom_wf eq_int_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot dM0-sq-empty subtype_base_sq int_subtype_base squash_wf true_wf dM-lift_wf dma-hom_wf all_wf dM_inc_wf dM-lift-0 nc-s_wf f-subset-add-name iff_weakening_equal dM-lift-0-sq not-added-name dM-lift-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache dependent_functionElimination dependent_set_memberEquality intEquality natural_numberEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry setElimination rename baseClosed lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_pairFormation impliesFunctionality voidElimination voidEquality imageElimination setEquality imageMemberEquality

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+i].    (i0)  \mcdot{}  s  \mcdot{}  f  =  f  supposing  (f  i)  =  0



Date html generated: 2017_10_05-AM-01_02_43
Last ObjectModification: 2017_07_28-AM-09_26_23

Theory : cubical!type!theory


Home Index