Nuprl Lemma : nc-0-comp-s
∀[I,K:fset(ℕ)]. ∀[i:ℕ]. ∀[f:K ⟶ I+i].  (i0) ⋅ s ⋅ f = f ∈ K ⟶ I+i supposing (f i) = 0 ∈ Point(dM(K))
Proof
Definitions occuring in Statement : 
nc-0: (i0)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dM0: 0
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nc-0: (i0)
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
compose: f o g
, 
dM: dM(I)
, 
dM-lift: dM-lift(I;J;f)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
names: names(I)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
nc-s: s
Lemmas referenced : 
names_wf, 
add-name_wf, 
equal_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
dM0_wf, 
names-hom_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
dM0-sq-empty, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
dM-lift_wf, 
dma-hom_wf, 
all_wf, 
dM_inc_wf, 
dM-lift-0, 
nc-s_wf, 
f-subset-add-name, 
iff_weakening_equal, 
dM-lift-0-sq, 
not-added-name, 
dM-lift-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
dependent_set_memberEquality, 
intEquality, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
voidElimination, 
voidEquality, 
imageElimination, 
setEquality, 
imageMemberEquality
Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+i].    (i0)  \mcdot{}  s  \mcdot{}  f  =  f  supposing  (f  i)  =  0
Date html generated:
2017_10_05-AM-01_02_43
Last ObjectModification:
2017_07_28-AM-09_26_23
Theory : cubical!type!theory
Home
Index