Nuprl Lemma : pi-comp_wf1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (pi-comp(Gamma;A;B;cA;cB) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}
   ⟶ lambda:cubical-path-0(Gamma;ΠB;I;i;rho;phi;mu)
   ⟶ J:fset(ℕ)
   ⟶ f:J ⟶ I
   ⟶ u1:A(f((i1)(rho)))
   ⟶ let new-name(J) in
       let nu pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) in
       cubical-path-1(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-pi: ΠB cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-e': g,i=j nc-1: (i1) nc-s: s new-name: new-name(I) add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: let: let uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi-comp: pi-comp(Gamma;A;B;cA;cB) all: x:A. B[x] implies:  Q has-value: (a)↓ subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: let: let composition-op: Gamma ⊢ CompOp(A) ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q
Lemmas referenced :  new-name_wf value-type-has-value nat_wf not_wf fset-member_wf int-deq_wf set-value-type istype-nat le_wf istype-int int-value-type cc-adjoin-cube_wf add-name_wf cube-set-restriction_wf nc-e'_wf pi-comp-nu_wf subtype_rel-equal cubical-type-at_wf nc-r_wf trivial-member-add-name1 nc-r'_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le face-presheaf_wf2 pi-comp-app_wf pi-comp-lambda_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cube-context-adjoin_wf nc-1_wf names-hom_wf cubical-path-0_wf cubical-pi_wf cubical-term_wf cubical-subset_wf nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self fset_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt rename callbyvalueReduce setEquality applyEquality because_Cache independent_isectElimination lambdaEquality_alt intEquality natural_numberEquality setElimination dependent_functionElimination dependent_set_memberEquality_alt unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination instantiate equalityIstype equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (pi-comp(Gamma;A;B;cA;cB)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}
      {}\mrightarrow{}  lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)
      {}\mrightarrow{}  J:fset(\mBbbN{})
      {}\mrightarrow{}  f:J  {}\mrightarrow{}  I
      {}\mrightarrow{}  u1:A(f((i1)(rho)))
      {}\mrightarrow{}  let  j  =  new-name(J)  in
              let  nu  =  pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j)  in
              cubical-path-1(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);
                                            pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)))



Date html generated: 2020_05_20-PM-03_59_40
Last ObjectModification: 2020_04_09-PM-08_18_05

Theory : cubical!type!theory


Home Index