Nuprl Lemma : pi-comp-nu_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[u1:A(f((i1)(rho)))]. ∀[j:{j:ℕ| ¬j ∈ J} ].
  (pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) ∈ A(r_j(f,i=1-j(rho))))


Proof




Definitions occuring in Statement :  pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) composition-op: Gamma ⊢ CompOp(A) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-r': g,i=1-j nc-1: (i1) nc-r: r_i add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) not: ¬A implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: false: False ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q let: let cube-set-restriction: f(s) pi2: snd(t) face-presheaf: 𝔽 fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self istype-void istype-cubical-type-at cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-1_wf names-hom_wf I_cube_wf fset_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf fill_from_comp_wf2 nc-r'_wf lattice-0_wf face_lattice_wf trivial-section_wf face-presheaf_wf2 nc-s_wf f-subset-add-name subtype_rel-equal cubical-type-at_wf nc-0_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-comp subtype_rel_self iff_weakening_equal nh-comp_wf nc-r'-nc-0 cubical-path-condition-0 cubical-path-condition_wf cubical-type-ap-morph_wf nc-r_wf trivial-member-add-name1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry setIsType extract_by_obid functionIsType universeIsType isectElimination thin applyEquality intEquality independent_isectElimination because_Cache lambdaEquality_alt natural_numberEquality hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination instantiate imageElimination universeEquality imageMemberEquality baseClosed productElimination lambdaFormation_alt equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[u1:A(f((i1)(rho)))].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j)  \mmember{}  A(r\_j(f,i=1-j(rho))))



Date html generated: 2020_05_20-PM-03_57_39
Last ObjectModification: 2020_04_09-PM-06_45_39

Theory : cubical!type!theory


Home Index