Nuprl Lemma : nc-r'-nc-0

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].  ((i1) ⋅ f,i=1-j ⋅ (j0) ∈ J ⟶ I+\000Ci)


Proof




Definitions occuring in Statement :  nc-r': g,i=1-j nc-1: (i1) nc-0: (i0) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nc-r': g,i=1-j compose: g nc-1: (i1) names: names(I) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T DeMorgan-algebra: DeMorganAlgebra nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q top: Top dM1: 1 cons: [a b] fset-singleton: {x} free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-1: 1 mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice opposite-lattice: opposite-lattice(L) lattice-0: 0 nil: [] empty-fset: {} list_accum: list_accum f-union: f-union(domeq;rngeq;s;x.g[x]) fset-image: f"(s) list_ind: list_ind reduce: reduce(f;k;as) lattice-fset-join: \/(s) lattice-extend: lattice-extend(L;eq;eqL;f;ac) dm-neg: ¬(x) eq_atom: =a y record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) record-select: r.x dma-neg: ¬(x) nc-0: (i0)
Lemmas referenced :  names_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void names-hom_wf dM1-sq-singleton-empty eq_int_wf eqtt_to_assert assert_of_eq_int trivial-member-add-name1 nc-0_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int equal_wf squash_wf true_wf istype-universe lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc not-added-name dM-lift_wf2 dM-point-subtype f-subset-add-name subtype_rel_self iff_weakening_equal dM-lift-nc-0 nh-comp-sq dM-lift-1 dM-lift-opp int_formula_prop_eq_lemma intformeq_wf satisfiable-full-omega-tt dM1_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination setIsType functionIsType applyEquality intEquality because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType lambdaFormation_alt equalityElimination equalityTransitivity equalitySymmetry productElimination equalityIstype promote_hyp instantiate cumulativity imageElimination universeEquality productEquality isectEquality imageMemberEquality baseClosed computeAll voidEquality isect_memberEquality dependent_pairFormation setEquality lambdaEquality lambdaFormation

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    ((i1)  \mcdot{}  f  =  f,i=1-j  \mcdot{}  (j0))



Date html generated: 2020_05_20-PM-01_37_57
Last ObjectModification: 2020_01_08-AM-11_01_52

Theory : cubical!type!theory


Home Index