Nuprl Lemma : ip-weak-triangle-inequality
∀rv:InnerProductSpace. ∀a,b,x,p:Point.  (ax=ab ⇒ a_x_p ⇒ bp ≥ xp)
Proof
Definitions occuring in Statement : 
ip-ge: cd ≥ ab, 
ip-between: a_b_c, 
ip-congruent: ab=cd, 
inner-product-space: InnerProductSpace, 
ss-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ip-congruent: ab=cd, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
and: P ∧ Q, 
uiff: uiff(P;Q)
Lemmas referenced : 
ip-dist-between, 
rv-norm-triangle-inequality2, 
ip-between_wf, 
ip-congruent_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
radd_wf, 
radd-preserves-rleq, 
rminus_wf, 
rleq_functionality, 
req_weakening, 
radd_functionality, 
uiff_transitivity, 
req_transitivity, 
rminus-as-rmul, 
radd-assoc, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
ip-ge-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
instantiate, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
productElimination, 
minusEquality, 
addEquality, 
independent_functionElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,x,p:Point.    (ax=ab  {}\mRightarrow{}  a\_x\_p  {}\mRightarrow{}  bp  \mgeq{}  xp)
Date html generated:
2017_10_05-AM-00_12_31
Last ObjectModification:
2017_03_19-PM-11_35_38
Theory : inner!product!spaces
Home
Index