Nuprl Lemma : trans-kernel-equation
∀[rv:InnerProductSpace]. ∀[e:{e:Point| e^2 = r1} ]. ∀[T:ℝ ⟶ Point ⟶ Point].
  ∀[t:ℝ]. ∀[h:{h:Point| h ⋅ e = r0} ].  T_t(h) ≡ h + ρ(h;t)*e supposing translation-group-fun(rv;e;T)
Proof
Definitions occuring in Statement : 
trans-kernel: ρ(h;t), 
trans-apply: T_t(x), 
translation-group-fun: translation-group-fun(rv;e;T), 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
rv-mul: a*x, 
rv-add: x + y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
ss-eq: x ≡ y, 
ss-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
guard: {T}, 
all: ∀x:A. B[x], 
prop: ℙ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
translation-group-fun: translation-group-fun(rv;e;T), 
and: P ∧ Q, 
trans-apply: T_t(x), 
squash: ↓T, 
ss-eq: x ≡ y, 
not: ¬A, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
stable: Stable{P}, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
trans-kernel: ρ(h;t), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
cand: A c∧ B
Lemmas referenced : 
sq_stable__ss-eq, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
trans-apply_wf, 
real_wf, 
rv-add_wf, 
rv-mul_wf, 
trans-kernel_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
ss-sep_wf, 
set_wf, 
ss-point_wf, 
translation-group-fun_wf, 
stable__ss-eq, 
false_wf, 
or_wf, 
rless_wf, 
not_wf, 
ss-eq_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rleq_weakening_rless, 
rleq_wf, 
radd_wf, 
rmul_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
ss-eq_weakening, 
uiff_transitivity, 
ss-eq_functionality, 
rv-add_functionality, 
rv-mul_functionality, 
rv-ip_functionality, 
rv-ip-add, 
radd_functionality, 
req_transitivity, 
rv-ip-mul, 
rmul_functionality, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
not-rless, 
rleq-implies-rleq, 
rminus_wf, 
rsub_wf, 
itermMinus_wf, 
exists_wf, 
real_term_value_minus_lemma, 
ss-eq_inversion, 
radd-rminus-both, 
trans-apply_functionality, 
trans-apply-0, 
equal_wf, 
radd-rminus, 
rv-0_wf, 
rv-mul-add-alt, 
rv-add-comm, 
rv-mul0, 
rv-add-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
functionExtensionality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
voidElimination, 
lambdaFormation, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality, 
setEquality, 
addLevel, 
existsFunctionality, 
promote_hyp, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:\{e:Point|  e\^{}2  =  r1\}  ].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].
    \mforall{}[t:\mBbbR{}].  \mforall{}[h:\{h:Point|  h  \mcdot{}  e  =  r0\}  ].    T\_t(h)  \mequiv{}  h  +  \mrho{}(h;t)*e  supposing  translation-group-fun(rv;e;T\000C)
Date html generated:
2017_10_05-AM-00_22_46
Last ObjectModification:
2017_07_02-PM-02_04_38
Theory : inner!product!spaces
Home
Index