Nuprl Lemma : free-dl-basis
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-dist-lattice(T; eq))].
  (x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement : 
free-dl-inc: free-dl-inc(x), 
free-dist-lattice: free-dist-lattice(T; eq), 
lattice-fset-join: \/(s), 
lattice-fset-meet: /\(s), 
lattice-point: Point(l), 
fset-image: f"(s), 
deq-fset: deq-fset(eq), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
guard: {T}, 
lattice-point: Point(l), 
record-select: r.x, 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
fset-singleton: {x}, 
cons: [a / b], 
sq_stable: SqStable(P), 
fset-member: a ∈ s, 
assert: ↑b, 
deq-member: x ∈b L, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
lattice-fset-join: \/(s), 
lattice-0: 0, 
fset-add: fset-add(eq;x;s), 
true: True, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
or: P ∨ Q, 
decidable: Dec(P), 
f-proper-subset: xs ⊆≠ ys, 
order: Order(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
lattice-point_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
free-dl-point, 
fset-antichain-singleton, 
fset-singleton_wf, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
deq-fset_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
lattice-fset-join-is-lub, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-image_wf, 
fset-member_wf, 
member-fset-image-iff, 
free-dl-le, 
fset-all-iff, 
bnot_wf, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_of_bnot, 
member-fset-singleton, 
not_wf, 
assert_witness, 
assert-fset-null, 
fset-filter-is-empty, 
assert-deq-f-subset, 
f-subset_weakening, 
lattice-fset-join_wf, 
decidable__equal_free-dl, 
subtype_rel_self, 
fset-ac-le-implies2, 
sq_stable__fset-member, 
set_wf, 
fset-induction, 
squash_wf, 
exists_wf, 
sq_stable__all, 
sq_stable__squash, 
empty-fset_wf, 
fset-add_wf, 
fset-union_wf, 
true_wf, 
lattice-fset-join-union, 
iff_weakening_equal, 
free-dl-join, 
member-fset-minimals, 
f-proper-subset-dec_wf, 
member-fset-union, 
member-fset-add, 
lattice-fset-join-singleton, 
and_wf, 
assert-fset-antichain, 
deq-implies, 
lattice-le-order, 
bdd-distributive-lattice-subtype-lattice, 
lattice-fset-meet-free-dl-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
functionExtensionality, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))
Date html generated:
2017_10_05-AM-00_36_16
Last ObjectModification:
2017_07_28-AM-09_14_53
Theory : lattices
Home
Index