Nuprl Lemma : sq_stable__fs-in-subtype

[K:RngSig]. ∀[S,T:Type].  ∀[f:formal-sum(K;S)]. SqStable(fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)


Proof




Definitions occuring in Statement :  fs-in-subtype: fs-in-subtype(K;S;T;f) formal-sum: formal-sum(K;S) strong-subtype: strong-subtype(A;B) sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q sq_stable: SqStable(P) implies:  Q fs-in-subtype: fs-in-subtype(K;S;T;f) fs-predicate: fs-predicate(K;S;p.P[p];f) squash: T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B formal-sum: formal-sum(K;S) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  strong-subtype-iff-respects-equality formal-sum_wf strong-subtype_wf istype-universe rng_sig_wf sq_stable__squash exists_wf basic-formal-sum_wf equal_wf subtype_quotient bfs-equiv_wf bfs-equiv-rel bfs-predicate_wf pi2_wf rng_car_wf equal-wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule lambdaEquality_alt dependent_functionElimination imageElimination imageMemberEquality baseClosed functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality productEquality because_Cache applyEquality productIsType independent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[f:formal-sum(K;S)].  SqStable(fs-in-subtype(K;S;T;f))  supposing  strong-subtype(T;S)



Date html generated: 2019_10_31-AM-06_29_10
Last ObjectModification: 2019_08_19-PM-01_18_26

Theory : linear!algebra


Home Index