Nuprl Lemma : sq_stable__fs-in-subtype
∀[K:RngSig]. ∀[S,T:Type].  ∀[f:formal-sum(K;S)]. SqStable(fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
formal-sum: formal-sum(K;S)
, 
strong-subtype: strong-subtype(A;B)
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
fs-predicate: fs-predicate(K;S;p.P[p];f)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
formal-sum: formal-sum(K;S)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
strong-subtype-iff-respects-equality, 
formal-sum_wf, 
strong-subtype_wf, 
istype-universe, 
rng_sig_wf, 
sq_stable__squash, 
exists_wf, 
basic-formal-sum_wf, 
equal_wf, 
subtype_quotient, 
bfs-equiv_wf, 
bfs-equiv-rel, 
bfs-predicate_wf, 
pi2_wf, 
rng_car_wf, 
equal-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
productEquality, 
because_Cache, 
applyEquality, 
productIsType, 
independent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[f:formal-sum(K;S)].  SqStable(fs-in-subtype(K;S;T;f))  supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_29_10
Last ObjectModification:
2019_08_19-PM-01_18_26
Theory : linear!algebra
Home
Index