Nuprl Lemma : rat-cube-complex-polyhedron-closed
∀[k:ℕ]. ∀[K:ℚCube(k) List]. ∀[v:|K|]. ∀[x:ℝ^k].  x ∈ |K| supposing v ≡ x
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
meq: x ≡ y
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
false: False
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
rat-cube-complex-polyhedron: |K|
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
list_wf, 
rat-cube-complex-polyhedron_wf, 
rn-prod-metric_wf, 
real-vec_wf, 
meq_wf, 
istype-void, 
l_exists_wf, 
in-rat-cube_functionality, 
iff_weakening_uiff, 
l_member_wf, 
in-rat-cube_wf, 
rational-cube_wf, 
l_exists_functionality
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionIsType, 
voidElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
universeIsType, 
setIsType, 
lambdaEquality_alt, 
sqequalRule, 
dependent_functionElimination, 
hypothesis, 
isectElimination, 
extract_by_obid, 
independent_functionElimination, 
lambdaFormation_alt, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].  \mforall{}[v:|K|].  \mforall{}[x:\mBbbR{}\^{}k].    x  \mmember{}  |K|  supposing  v  \mequiv{}  x
Date html generated:
2019_10_30-AM-10_13_08
Last ObjectModification:
2019_10_29-PM-01_34_06
Theory : real!vectors
Home
Index