Nuprl Lemma : rat-cube-complex-polyhedron-closed

[k:ℕ]. ∀[K:ℚCube(k) List]. ∀[v:|K|]. ∀[x:ℝ^k].  x ∈ |K| supposing v ≡ x


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) real-vec: ^n meq: x ≡ y list: List nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T rational-cube: Cube(k)
Definitions unfolded in proof :  false: False and: P ∧ Q iff: ⇐⇒ Q guard: {T} so_apply: x[s] prop: so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q not: ¬A rat-cube-complex-polyhedron: |K| uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat list_wf rat-cube-complex-polyhedron_wf rn-prod-metric_wf real-vec_wf meq_wf istype-void l_exists_wf in-rat-cube_functionality iff_weakening_uiff l_member_wf in-rat-cube_wf rational-cube_wf l_exists_functionality
Rules used in proof :  inhabitedIsType isectIsTypeImplies isect_memberEquality_alt equalitySymmetry equalityTransitivity axiomEquality functionIsType voidElimination productElimination independent_isectElimination because_Cache universeIsType setIsType lambdaEquality_alt sqequalRule dependent_functionElimination hypothesis isectElimination extract_by_obid independent_functionElimination lambdaFormation_alt hypothesisEquality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].  \mforall{}[v:|K|].  \mforall{}[x:\mBbbR{}\^{}k].    x  \mmember{}  |K|  supposing  v  \mequiv{}  x



Date html generated: 2019_10_30-AM-10_13_08
Last ObjectModification: 2019_10_29-PM-01_34_06

Theory : real!vectors


Home Index