Nuprl Lemma : real-cube-sep-disjoint
∀[k:ℕ]. ∀[c1,c2:real-cube(k)].  (c1 # c2 
⇒ (∀p:ℝ^k. (¬(p ∈ c1 ∧ p ∈ c2))))
Proof
Definitions occuring in Statement : 
real-cube-sep: c1 # c2
, 
in-real-cube: p ∈ c
, 
real-cube: real-cube(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
and: P ∧ Q
, 
real-cube-sep: c1 # c2
, 
exists: ∃x:A. B[x]
, 
in-real-cube: p ∈ c
, 
or: P ∨ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
rless_transitivity1, 
cube-upper_wf, 
subtype_rel_self, 
int_seg_wf, 
real_wf, 
cube-lower_wf, 
rless_irreflexivity, 
in-real-cube_wf, 
real-vec_wf, 
real-cube-sep_wf, 
real-cube_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
productElimination, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
hypothesis, 
extract_by_obid, 
applyEquality, 
isectElimination, 
sqequalRule, 
functionEquality, 
setElimination, 
rename, 
imageElimination, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
voidElimination, 
productIsType, 
universeIsType, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (c1  \#  c2  {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k.  (\mneg{}(p  \mmember{}  c1  \mwedge{}  p  \mmember{}  c2))))
Date html generated:
2019_10_30-AM-11_31_29
Last ObjectModification:
2019_09_27-PM-01_30_54
Theory : real!vectors
Home
Index