Nuprl Lemma : real-cube-sep-disjoint

[k:ℕ]. ∀[c1,c2:real-cube(k)].  (c1 c2  (∀p:ℝ^k. (p ∈ c1 ∧ p ∈ c2))))


Proof




Definitions occuring in Statement :  real-cube-sep: c1 c2 in-real-cube: p ∈ c real-cube: real-cube(k) real-vec: ^n nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] not: ¬A false: False and: P ∧ Q real-cube-sep: c1 c2 exists: x:A. B[x] in-real-cube: p ∈ c or: P ∨ Q guard: {T} subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T uimplies: supposing a prop:
Lemmas referenced :  rless_transitivity1 cube-upper_wf subtype_rel_self int_seg_wf real_wf cube-lower_wf rless_irreflexivity in-real-cube_wf real-vec_wf real-cube-sep_wf real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin sqequalHypSubstitution productElimination dependent_functionElimination hypothesisEquality unionElimination hypothesis extract_by_obid applyEquality isectElimination sqequalRule functionEquality setElimination rename imageElimination independent_functionElimination independent_isectElimination because_Cache voidElimination productIsType universeIsType lambdaEquality_alt functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (c1  \#  c2  {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k.  (\mneg{}(p  \mmember{}  c1  \mwedge{}  p  \mmember{}  c2))))



Date html generated: 2019_10_30-AM-11_31_29
Last ObjectModification: 2019_09_27-PM-01_30_54

Theory : real!vectors


Home Index