Nuprl Lemma : absval-implies-rneq

x,y:ℝ.  ((∃n:ℕ+4 < |(x n) n|)  x ≠ y)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: absval: |i| nat_plus: + less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B nat: so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  exists_wf nat_plus_wf less_than_wf absval_wf subtract_wf nat_wf real_wf absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot rless-iff2 nat_plus_properties decidable__lt subtract-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf false_wf rless_wf minus-is-int-iff itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis sqequalRule lambdaEquality natural_numberEquality applyEquality setElimination rename hypothesisEquality minusEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity inrFormation addEquality dependent_set_memberEquality pointwiseFunctionality baseApply closedConclusion int_eqEquality intEquality computeAll inlFormation

Latex:
\mforall{}x,y:\mBbbR{}.    ((\mexists{}n:\mBbbN{}\msupplus{}.  4  <  |(x  n)  -  y  n|)  {}\mRightarrow{}  x  \mneq{}  y)



Date html generated: 2017_10_03-AM-08_27_11
Last ObjectModification: 2017_07_28-AM-07_24_44

Theory : reals


Home Index