Nuprl Lemma : blended-real-req
∀[k:ℕ+]. ∀[x,y:ℝ].  blended-real(k;x;y) = y supposing |x - y| ≤ (r1/r(k))
Proof
Definitions occuring in Statement : 
blended-real: blended-real(k;x;y), 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
cand: A c∧ B, 
real: ℝ, 
uiff: uiff(P;Q), 
guard: {T}, 
implies: P ⇒ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
le: A ≤ B, 
so_apply: x[s], 
accelerate: accelerate(k;f), 
blended-real: blended-real(k;x;y), 
blend-seq: blend-seq(k;x;y), 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
real-regular, 
less_than_wf, 
req-iff-bdd-diff, 
blended-real_wf, 
accelerate_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
accelerate-bdd-diff, 
req_transitivity, 
req_witness, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
eventually-equal-implies-bdd-diff, 
int_upper_wf, 
all_wf, 
equal_wf, 
less_than_transitivity1, 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_upper_properties, 
itermMultiply_wf, 
intformle_wf, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-swap, 
add-commutes, 
zero-add, 
le-add-cancel, 
int_subtype_base, 
equal-wf-base, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
productElimination, 
independent_functionElimination, 
inrFormation, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
sqleReflexivity, 
multiplyEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
divideEquality, 
addEquality, 
addLevel
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].    blended-real(k;x;y)  =  y  supposing  |x  -  y|  \mleq{}  (r1/r(k))
Date html generated:
2017_10_03-AM-10_08_56
Last ObjectModification:
2017_07_05-PM-04_27_51
Theory : reals
Home
Index