Nuprl Lemma : close-reals-implies

[x,y:ℝ]. ∀[m:ℕ+].  |(x m) m| ≤ supposing |x y| ≤ (r1/r(3 m))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a multiply: m subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: uiff: uiff(P;Q) le: A ≤ B rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q real: subtype_rel: A ⊆B nat:
Lemmas referenced :  close-reals-iff nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than le_witness_for_triv rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int rless_wf nat_plus_wf real_wf decidable__le absval_wf subtract_wf multiply-is-int-iff intformle_wf int_formula_prop_le_lemma false_wf mul_preserves_le istype-le itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt multiplyEquality natural_numberEquality setElimination rename because_Cache hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination equalityTransitivity equalitySymmetry closedConclusion inrFormation_alt isectIsTypeImplies inhabitedIsType applyEquality pointwiseFunctionality promote_hyp baseApply baseClosed

Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    |(x  m)  -  y  m|  \mleq{}  4  supposing  |x  -  y|  \mleq{}  (r1/r(3  *  m))



Date html generated: 2019_10_29-AM-10_03_27
Last ObjectModification: 2019_06_03-PM-02_11_55

Theory : reals


Home Index