Nuprl Lemma : close-reals-implies
∀[x,y:ℝ]. ∀[m:ℕ+].  |(x m) - y m| ≤ 4 supposing |x - y| ≤ (r1/r(3 * m))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
close-reals-iff, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
le_witness_for_triv, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
nat_plus_wf, 
real_wf, 
decidable__le, 
absval_wf, 
subtract_wf, 
multiply-is-int-iff, 
intformle_wf, 
int_formula_prop_le_lemma, 
false_wf, 
mul_preserves_le, 
istype-le, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
inrFormation_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
applyEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
baseClosed
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    |(x  m)  -  y  m|  \mleq{}  4  supposing  |x  -  y|  \mleq{}  (r1/r(3  *  m))
Date html generated:
2019_10_29-AM-10_03_27
Last ObjectModification:
2019_06_03-PM-02_11_55
Theory : reals
Home
Index