Nuprl Lemma : compact-metric-to-int-bounded
∀[X:Type]. ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀f:X ⟶ ℤ.  ∃B:ℕ. ∀x:X. ∃y:X. (x ≡ y ∧ (|f y| ≤ B))
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
meq: x ≡ y
, 
metric: metric(X)
, 
absval: |i|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
m-TB: m-TB(X;d)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
mtb-cantor: mtb-cantor(mtb)
, 
pi1: fst(t)
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
mtb-cantor-map-onto, 
general-cantor-to-int-bounded, 
pi1_wf_top, 
nat_wf, 
nat_plus_wf, 
subtype_rel_product, 
int_seg_wf, 
istype-nat, 
top_wf, 
istype-void, 
mtb-cantor-map_wf, 
mtb-point-cantor_wf, 
meq_inversion, 
meq_wf, 
istype-le, 
absval_wf, 
istype-int, 
m-TB_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
functionEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
productEquality, 
natural_numberEquality, 
universeIsType, 
because_Cache, 
functionIsType, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
closedConclusion, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}mtb:m-TB(X;d).  \mforall{}f:X  {}\mrightarrow{}  \mBbbZ{}.
        \mexists{}B:\mBbbN{}.  \mforall{}x:X.  \mexists{}y:X.  (x  \mequiv{}  y  \mwedge{}  (|f  y|  \mleq{}  B))
Date html generated:
2019_10_30-AM-07_10_58
Last ObjectModification:
2019_10_09-AM-11_38_12
Theory : reals
Home
Index