Nuprl Lemma : continuous-composition-from-maps-compact

I,J:Interval. ∀f:I ⟶ℝ. ∀g:J ⟶ℝ.
  (maps-compact(I;J;x.f[x])  f[x] continuous for x ∈  g[x] continuous for x ∈  g[f[x]] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  maps-compact: maps-compact(I;J;x.f[x]) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I member: t ∈ T maps-compact: maps-compact(I;J;x.f[x]) exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top
Lemmas referenced :  small-reciprocal-real rless_wf int-to-real_wf nat_plus_wf icompact_wf i-approx_wf continuous_wf real_wf i-member_wf maps-compact_wf rfun_wf interval_wf istype-less_than rleq_wf rabs_wf rsub_wf rdiv_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf i-member-approx rless_transitivity2 rleq_weakening_rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination rename cut hypothesis setElimination introduction extract_by_obid dependent_set_memberEquality_alt universeIsType isectElimination natural_numberEquality setIsType sqequalRule lambdaEquality_alt applyEquality inhabitedIsType productIsType functionIsType because_Cache closedConclusion independent_isectElimination inrFormation_alt independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation promote_hyp

Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g:J  {}\mrightarrow{}\mBbbR{}.
    (maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  J
    {}\mRightarrow{}  g[f[x]]  continuous  for  x  \mmember{}  I)



Date html generated: 2019_10_30-AM-07_47_14
Last ObjectModification: 2018_11_12-AM-10_54_20

Theory : reals


Home Index