Nuprl Lemma : dot-product-zero
∀[n:ℕ]. ∀[x:ℝ^n].  (x⋅λi.r0 = r0)
Proof
Definitions occuring in Statement : 
dot-product: x⋅y, 
real-vec: ℝ^n, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dot-product: x⋅y, 
real-vec: ℝ^n, 
nat: ℕ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
dot-product_wf, 
int-to-real_wf, 
int_seg_wf, 
real-vec_wf, 
nat_wf, 
rsum_wf, 
subtract_wf, 
rmul_wf, 
subtract-add-cancel, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
le_wf, 
req_weakening, 
req_functionality, 
rsum_functionality2, 
rmul-zero-both, 
rsum-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (x\mcdot{}\mlambda{}i.r0  =  r0)
Date html generated:
2016_10_26-AM-10_20_50
Last ObjectModification:
2016_10_02-PM-06_29_01
Theory : reals
Home
Index