Nuprl Lemma : dot-product-zero

[n:ℕ]. ∀[x:ℝ^n].  (x⋅λi.r0 r0)


Proof




Definitions occuring in Statement :  dot-product: x⋅y real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dot-product: x⋅y real-vec: ^n nat: implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness dot-product_wf int-to-real_wf int_seg_wf real-vec_wf nat_wf rsum_wf subtract_wf rmul_wf subtract-add-cancel nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf intformle_wf itermSubtract_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma le_wf req_weakening req_functionality rsum_functionality2 rmul-zero-both rsum-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality natural_numberEquality hypothesis setElimination rename independent_functionElimination isect_memberEquality because_Cache applyEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll addEquality lambdaFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (x\mcdot{}\mlambda{}i.r0  =  r0)



Date html generated: 2016_10_26-AM-10_20_50
Last ObjectModification: 2016_10_02-PM-06_29_01

Theory : reals


Home Index