Nuprl Lemma : fun-converges-to_functionality2
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ. ∀g1:I ⟶ℝ.
  ∀[g2:I ⟶ℝ]
    ((∀x:{x:ℝ| x ∈ I} . (g1[x] = g2[x])) 
⇒ {lim n→∞.f[n;x] = λy.g1[y] for x ∈ I 
⇒ lim n→∞.f[n;x] = λy.g2[y] for x ∈ I}\000C)
Proof
Definitions occuring in Statement : 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
le: A ≤ B
, 
subinterval: I ⊆ J 
, 
uiff: uiff(P;Q)
Lemmas referenced : 
i-approx-is-subinterval, 
less_than_wf, 
int_upper_wf, 
set_wf, 
real_wf, 
i-member_wf, 
i-approx_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
int_upper_subtype_nat, 
nat_plus_subtype_nat, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_upper_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
icompact_wf, 
fun-converges-to_wf, 
nat_wf, 
req_wf, 
rfun_wf, 
interval_wf, 
subtype_rel_sets, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
dependent_set_memberEquality, 
setElimination, 
rename, 
isectElimination, 
natural_numberEquality, 
promote_hyp, 
productElimination, 
dependent_pairFormation, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
setEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g1:I  {}\mrightarrow{}\mBbbR{}.
    \mforall{}[g2:I  {}\mrightarrow{}\mBbbR{}]
        ((\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (g1[x]  =  g2[x]))
        {}\mRightarrow{}  \{lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g1[y]  for  x  \mmember{}  I  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g2[y]  for  x  \mmember{}  I\})
Date html generated:
2016_10_26-AM-11_13_01
Last ObjectModification:
2016_08_27-PM-08_22_07
Theory : reals
Home
Index