Nuprl Lemma : limit-shift-iff
∀m:ℕ. ∀X:ℕ ⟶ ℝ. ∀a:ℝ.  (lim n→∞.X[n] = a 
⇐⇒ lim n→∞.X[n + m] = a)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
Definitions unfolded in proof : 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:{A| B[x]}
, 
converges-to: lim n→∞.x[n] = y
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtract-add-cancel, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
all_wf, 
nat_plus_wf, 
squash_wf, 
less_than'_wf, 
sq_stable__rleq, 
rless_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
nat_plus_properties, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
sq_stable__all, 
real_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_wf, 
converges-to_wf, 
limit-shift
Rules used in proof : 
dependent_set_memberFormation, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
productElimination, 
inrFormation, 
because_Cache, 
functionEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}m:\mBbbN{}.  \mforall{}X:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.X[n]  =  a  \mLeftarrow{}{}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.X[n  +  m]  =  a)
Date html generated:
2016_11_08-AM-09_00_14
Last ObjectModification:
2016_11_06-PM-11_34_32
Theory : reals
Home
Index