Nuprl Lemma : limit-shift-iff

m:ℕ. ∀X:ℕ ⟶ ℝ. ∀a:ℝ.  (lim n→∞.X[n] ⇐⇒ lim n→∞.X[n m] a)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y real: nat: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  squash: T subtype_rel: A ⊆B le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y sq_stable: SqStable(P) guard: {T} rneq: x ≠ y nat_plus: + sq_exists: x:{A| B[x]} converges-to: lim n→∞.x[n] y top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  subtract-add-cancel int_term_value_subtract_lemma itermSubtract_wf subtract_wf all_wf nat_plus_wf squash_wf less_than'_wf sq_stable__rleq rless_wf int_formula_prop_less_lemma intformless_wf decidable__lt rless-int int-to-real_wf rdiv_wf nat_plus_properties rsub_wf rabs_wf rleq_wf sq_stable__all real_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_wf converges-to_wf limit-shift
Rules used in proof :  dependent_set_memberFormation imageElimination baseClosed imageMemberEquality equalitySymmetry equalityTransitivity axiomEquality minusEquality independent_pairEquality productElimination inrFormation because_Cache functionEquality computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination natural_numberEquality rename setElimination addEquality dependent_set_memberEquality functionExtensionality applyEquality lambdaEquality sqequalRule isectElimination independent_functionElimination independent_pairFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}m:\mBbbN{}.  \mforall{}X:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.X[n]  =  a  \mLeftarrow{}{}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.X[n  +  m]  =  a)



Date html generated: 2016_11_08-AM-09_00_14
Last ObjectModification: 2016_11_06-PM-11_34_32

Theory : reals


Home Index