Nuprl Lemma : max-metric-sep

n:ℕ. ∀x,y:ℝ^n.  (r0 < mdist(max-metric(n);x;y) ⇐⇒ ∃i:ℕn. i ≠ i)


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rneq: x ≠ y rless: x < y int-to-real: r(n) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T metric-leq: d1 ≤ d2 scale-metric: c*d mdist: mdist(d;x;y) iff: ⇐⇒ Q and: P ∧ Q implies:  Q guard: {T} uimplies: supposing a prop: rev_implies:  Q nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) rn-metric: rn-metric(n) rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top real-vec: ^n le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B less_than: a < b squash: T uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  max-metric-leq-rn-metric rn-metric-leq-max-metric rless_transitivity1 int-to-real_wf mdist_wf real-vec_wf max-metric_wf rn-metric_wf rless_wf decidable__equal_int subtype_base_sq int_subtype_base rmul_preserves_rless rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf rn-metric-sep int_seg_wf rneq_wf istype-nat real-vec-dist_wf istype-le itermAdd_wf int_term_value_add_lemma rmul_wf itermSubtract_wf itermMultiply_wf rless_functionality req_weakening real-vec-dist-dim0 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache sqequalRule independent_pairFormation hypothesis natural_numberEquality independent_functionElimination independent_isectElimination universeIsType setElimination rename unionElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry productElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination promote_hyp productIsType applyEquality dependent_set_memberEquality_alt inhabitedIsType imageElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (r0  <  mdist(max-metric(n);x;y)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  x  i  \mneq{}  y  i)



Date html generated: 2019_10_30-AM-08_43_44
Last ObjectModification: 2019_10_02-AM-11_06_39

Theory : reals


Home Index