Nuprl Lemma : max-metric-sep
∀n:ℕ. ∀x,y:ℝ^n.  (r0 < mdist(max-metric(n);x;y) 
⇐⇒ ∃i:ℕn. x i ≠ y i)
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n)
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rneq: x ≠ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric-leq: d1 ≤ d2
, 
scale-metric: c*d
, 
mdist: mdist(d;x;y)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
rn-metric: rn-metric(n)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
real-vec: ℝ^n
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
max-metric-leq-rn-metric, 
rn-metric-leq-max-metric, 
rless_transitivity1, 
int-to-real_wf, 
mdist_wf, 
real-vec_wf, 
max-metric_wf, 
rn-metric_wf, 
rless_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rmul_preserves_rless, 
rless-int, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rn-metric-sep, 
int_seg_wf, 
rneq_wf, 
istype-nat, 
real-vec-dist_wf, 
istype-le, 
itermAdd_wf, 
int_term_value_add_lemma, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
rless_functionality, 
req_weakening, 
real-vec-dist-dim0, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
independent_isectElimination, 
universeIsType, 
setElimination, 
rename, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
promote_hyp, 
productIsType, 
applyEquality, 
dependent_set_memberEquality_alt, 
inhabitedIsType, 
imageElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (r0  <  mdist(max-metric(n);x;y)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  x  i  \mneq{}  y  i)
Date html generated:
2019_10_30-AM-08_43_44
Last ObjectModification:
2019_10_02-AM-11_06_39
Theory : reals
Home
Index