Nuprl Lemma : radd-rmin
∀[x,y,z:ℝ].  ((x + rmin(y;z)) = rmin(x + y;x + z))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
rmin: rmin(x;y)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
squash: ↓T
Lemmas referenced : 
req-iff-bdd-diff, 
radd_wf, 
rmin_wf, 
req_witness, 
real_wf, 
nat_plus_wf, 
imin_wf, 
trivial-bdd-diff, 
bdd-diff_functionality, 
radd-bdd-diff, 
rmin_functionality_wrt_bdd-diff, 
ifthenelse_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
nat_plus_properties, 
less_than_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
add-is-int-iff, 
false_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
imin_unfold, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
addEquality, 
lambdaFormation, 
dependent_functionElimination, 
intEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
dependent_set_memberEquality, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  +  rmin(y;z))  =  rmin(x  +  y;x  +  z))
Date html generated:
2017_10_03-AM-08_29_12
Last ObjectModification:
2017_07_28-AM-07_25_45
Theory : reals
Home
Index