Nuprl Lemma : rleq-implies

[x,y:ℝ].  ∀n:ℕ+((x (4 n)) ≤ ((y (4 n)) 11)) supposing x ≤ y


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a multiply: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] rleq: x ≤ y rsub: y rnonneg: rnonneg(x) rminus: -(x) radd: b accelerate: accelerate(k;f) has-value: (a)↓ nat_plus: + squash: T prop: real: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B iff: ⇐⇒ Q le: A ≤ B nat: less_than': less_than'(a;b) less_than: a < b int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf bool_cases not_wf bnot_wf assert_wf lt_int_wf int_term_value_minus_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_le_lemma itermMinus_wf itermSubtract_wf itermAdd_wf intformle_wf minus-is-int-iff add-is-int-iff subtract-is-int-iff decidable__le absval_ifthenelse sq_stable__le set_wf nat_wf absval_wf rem_bounds_absval real_wf rleq_wf less_than'_wf nequal_wf mul_nat_plus div_rem_sum2 false_wf mul_preserves_le l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma iff_weakening_equal equal_wf int_subtype_base subtype_base_sq less_than_wf int_formula_prop_less_lemma int_formula_prop_and_lemma intformless_wf intformand_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties nil_wf nat_plus_wf cons_wf reg-seq-list-add-as-l_sum true_wf squash_wf le_wf int-value-type value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution sqequalRule callbyvalueReduce sqleReflexivity dependent_functionElimination thin hypothesisEquality lemma_by_obid isectElimination intEquality independent_isectElimination hypothesis multiplyEquality natural_numberEquality setElimination rename applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry minusEquality divideEquality functionEquality because_Cache unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality independent_pairFormation addLevel instantiate cumulativity independent_functionElimination imageMemberEquality baseClosed universeEquality productElimination addEquality independent_pairEquality axiomEquality remainderEquality pointwiseFunctionality promote_hyp baseApply closedConclusion impliesFunctionality

Latex:
\mforall{}[x,y:\mBbbR{}].    \mforall{}n:\mBbbN{}\msupplus{}.  ((x  (4  *  n))  \mleq{}  ((y  (4  *  n))  +  11))  supposing  x  \mleq{}  y



Date html generated: 2016_05_18-AM-07_04_40
Last ObjectModification: 2016_01_17-AM-01_50_37

Theory : reals


Home Index