Nuprl Lemma : rleq-int-fractions3
∀[a,b:ℤ]. ∀[d:ℕ+].  uiff((r(b)/r(d)) ≤ r(a);b ≤ (a * d))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
less_than'_wf, 
rleq_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rsub_wf, 
nat_plus_wf, 
le_wf, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rmul_wf, 
uiff_transitivity, 
rleq_functionality, 
req_weakening, 
rmul-int, 
rmul-rdiv-cancel2, 
rmul_preserves_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
minusEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[d:\mBbbN{}\msupplus{}].    uiff((r(b)/r(d))  \mleq{}  r(a);b  \mleq{}  (a  *  d))
Date html generated:
2016_10_26-AM-09_09_49
Last ObjectModification:
2016_10_06-PM-02_27_38
Theory : reals
Home
Index