Nuprl Lemma : rleq-int-fractions3

[a,b:ℤ]. ∀[d:ℕ+].  uiff((r(b)/r(d)) ≤ r(a);b ≤ (a d))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False nat_plus: + prop: rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rleq: x ≤ y rnonneg: rnonneg(x) subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  less_than'_wf rleq_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rsub_wf nat_plus_wf le_wf rmul_preserves_rleq2 rleq-int decidable__le intformle_wf int_formula_prop_le_lemma rmul_wf uiff_transitivity rleq_functionality req_weakening rmul-int rmul-rdiv-cancel2 rmul_preserves_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination multiplyEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination inrFormation independent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality minusEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[d:\mBbbN{}\msupplus{}].    uiff((r(b)/r(d))  \mleq{}  r(a);b  \mleq{}  (a  *  d))



Date html generated: 2016_10_26-AM-09_09_49
Last ObjectModification: 2016_10_06-PM-02_27_38

Theory : reals


Home Index