Nuprl Lemma : rleq-int-fractions3
∀[a,b:ℤ]. ∀[d:ℕ+]. uiff((r(b)/r(d)) ≤ r(a);b ≤ (a * d))
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rleq: x ≤ y
,
int-to-real: r(n)
,
nat_plus: ℕ+
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
multiply: n * m
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
nat_plus: ℕ+
,
prop: ℙ
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
subtype_rel: A ⊆r B
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
less_than'_wf,
rleq_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_plus_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
rsub_wf,
nat_plus_wf,
le_wf,
rmul_preserves_rleq2,
rleq-int,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
rmul_wf,
uiff_transitivity,
rleq_functionality,
req_weakening,
rmul-int,
rmul-rdiv-cancel2,
rmul_preserves_rleq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
hypothesisEquality,
because_Cache,
extract_by_obid,
isectElimination,
multiplyEquality,
setElimination,
rename,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
inrFormation,
independent_functionElimination,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
applyEquality,
minusEquality
Latex:
\mforall{}[a,b:\mBbbZ{}]. \mforall{}[d:\mBbbN{}\msupplus{}]. uiff((r(b)/r(d)) \mleq{} r(a);b \mleq{} (a * d))
Date html generated:
2016_10_26-AM-09_09_49
Last ObjectModification:
2016_10_06-PM-02_27_38
Theory : reals
Home
Index