Nuprl Lemma : rnexp-rminus
∀x:ℝ. ∀n:ℕ.  (-(x)^n = if isOdd(n) then -(x^n) else x^n fi )
Proof
Definitions occuring in Statement : 
rnexp: x^k1, 
req: x = y, 
rminus: -(x), 
real: ℝ, 
isOdd: isOdd(n), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isEven: isEven(n), 
rev_uimplies: rev_uimplies(P;Q), 
not: ¬A
Lemmas referenced : 
isOdd_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
nat_wf, 
real_wf, 
req_wf, 
rnexp_wf, 
rminus_wf, 
rmul_wf, 
int-to-real_wf, 
eq_int_wf, 
modulus_wf_int_mod, 
less_than_wf, 
subtype_rel_set, 
int_mod_wf, 
le_wf, 
int-subtype-int_mod, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
exp_wf2, 
isEven_wf, 
req_weakening, 
rmul-identity1, 
uiff_transitivity, 
req_functionality, 
rnexp_functionality, 
rminus-as-rmul, 
rnexp-rmul, 
rmul_functionality, 
req_transitivity, 
rnexp-int, 
squash_wf, 
true_wf, 
exp-minusone, 
even-iff-not-odd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
minusEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
intEquality, 
lambdaEquality, 
cumulativity, 
imageElimination
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}.    (-(x)\^{}n  =  if  isOdd(n)  then  -(x\^{}n)  else  x\^{}n  fi  )
Date html generated:
2017_10_03-AM-08_39_52
Last ObjectModification:
2017_07_28-AM-07_31_00
Theory : reals
Home
Index