Nuprl Lemma : rnexp-rminus

x:ℝ. ∀n:ℕ.  (-(x)^n if isOdd(n) then -(x^n) else x^n fi )


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rminus: -(x) real: isOdd: isOdd(n) nat: ifthenelse: if then else fi  all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] isEven: isEven(n) rev_uimplies: rev_uimplies(P;Q) not: ¬A
Lemmas referenced :  isOdd_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nat_wf real_wf req_wf rnexp_wf rminus_wf rmul_wf int-to-real_wf eq_int_wf modulus_wf_int_mod less_than_wf subtype_rel_set int_mod_wf le_wf int-subtype-int_mod assert_of_eq_int neg_assert_of_eq_int exp_wf2 isEven_wf req_weakening rmul-identity1 uiff_transitivity req_functionality rnexp_functionality rminus-as-rmul rnexp-rmul rmul_functionality req_transitivity rnexp-int squash_wf true_wf exp-minusone even-iff-not-odd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate because_Cache independent_functionElimination voidElimination minusEquality natural_numberEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed applyEquality intEquality lambdaEquality cumulativity imageElimination

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}.    (-(x)\^{}n  =  if  isOdd(n)  then  -(x\^{}n)  else  x\^{}n  fi  )



Date html generated: 2017_10_03-AM-08_39_52
Last ObjectModification: 2017_07_28-AM-07_31_00

Theory : reals


Home Index