Nuprl Lemma : rnexp2-positive

x:ℝ(x ≠ r0  (r0 < x^2))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: uimplies: supposing a nat: rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False uiff: uiff(P;Q) and: P ∧ Q req_int_terms: t1 ≡ t2 guard: {T} rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rneq_wf int-to-real_wf real_wf rnexp-positive rminus_wf rless-implies-rless nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le rsub_wf itermSubtract_wf itermVar_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma rless_transitivity1 rnexp_wf rleq_weakening req_functionality rmul_wf rnexp2 itermMultiply_wf real_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution unionElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination dependent_set_memberEquality_alt setElimination rename approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule productElimination int_eqEquality

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (r0  <  x\^{}2))



Date html generated: 2019_10_29-AM-09_39_41
Last ObjectModification: 2019_03_20-PM-00_17_13

Theory : reals


Home Index