Nuprl Lemma : rnexp-positive

x:ℝ((r0 < x)  (∀n:ℕ(r0 < x^n)))


Proof




Definitions occuring in Statement :  rless: x < y rnexp: x^k1 int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: rless: x < y sq_exists: x:{A| B[x]} subtype_rel: A ⊆B real: sq_stable: SqStable(P) squash: T nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q less_than: a < b true: True subtract: m itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  rless_wf int-to-real_wf rnexp_wf subtract_wf sq_stable__less_than real_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_wf false_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rmul_wf intformeq_wf int_formula_prop_eq_lemma rless-int rless_functionality req_weakening rnexp-req rmul_preserves_rless rless-implies-rless real_term_polynomial itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf req_transitivity rmul_functionality rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis dependent_set_memberEquality hypothesisEquality addEquality applyEquality lambdaEquality sqequalRule independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}x:\mBbbR{}.  ((r0  <  x)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (r0  <  x\^{}n)))



Date html generated: 2017_10_03-AM-08_32_59
Last ObjectModification: 2017_07_28-AM-07_28_03

Theory : reals


Home Index