Nuprl Lemma : rnexp-req
∀[k:ℕ]. ∀[x:ℝ].  (x^k = if (k =z 0) then r1 else x * x^k - 1 fi )
Proof
Definitions occuring in Statement : 
rnexp: x^k1, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
rnexp: x^k1, 
eq_int: (i =z j), 
subtract: n - m, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
ge: i ≥ j , 
int_upper: {i...}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
real: ℝ, 
reg-seq-nexp: reg-seq-nexp(x;k), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nequal: a ≠ b ∈ T , 
true: True, 
fastexp: i^n, 
efficient-exp-ext, 
less_than: a < b, 
squash: ↓T, 
bdd-diff: bdd-diff(f;g), 
int-to-real: r(n), 
reg-seq-mul: reg-seq-mul(x;y), 
int_nzero: ℤ-o, 
absval: |i|, 
respects-equality: respects-equality(S;T), 
sq_stable: SqStable(P), 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
req_weakening, 
int-to-real_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nat_properties, 
nequal-le-implies, 
zero-add, 
istype-le, 
req-iff-bdd-diff, 
rnexp_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rmul_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
req_witness, 
bool_wf, 
real_wf, 
istype-nat, 
reg-seq-mul_wf, 
value-type-has-value, 
int_upper_wf, 
set-value-type, 
le_wf, 
int-value-type, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_plus_wf, 
absval_wf, 
istype-int_upper, 
canon-bnd_wf, 
bdd-diff_functionality, 
bdd-diff_weakening, 
rmul-bdd-diff-reg-seq-mul, 
set_subtype_base, 
decidable__equal_int, 
accelerate_wf, 
fastexp_wf, 
istype-less_than, 
reg-seq-nexp_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
accelerate-bdd-diff, 
nat_plus_properties, 
exp-fastexp, 
exp0_lemma, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
div-one, 
squash_wf, 
true_wf, 
exp1, 
subtype_rel_self, 
iff_weakening_equal, 
div-cancel, 
nequal_wf, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
upper_subtype_upper, 
divide_wf, 
exp_wf4, 
subtype_rel_set, 
nat_wf, 
exp_wf_nat_plus, 
add_nat_plus, 
multiply_nat_wf, 
subtract_nat_wf, 
add_nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
respects-equality-sets, 
regular-int-seq_wf, 
respects-equality-trivial, 
reg-seq-mul_functionality_wrt_bdd-diff, 
bdd-diff_inversion, 
bdd-diff_wf, 
canonical-bound_wf, 
add-is-int-iff, 
false_wf, 
mul_cancel_in_le, 
absval_nat_plus, 
less_than_wf, 
absval_mul, 
left_mul_subtract_distrib, 
left_mul_add_distrib, 
div_rem_sum2, 
rem_bounds_absval, 
exp_step, 
mul_nzero, 
exp_wf3, 
add-commutes, 
exp_wf2, 
add-swap, 
add-associates, 
sq_stable__less_than, 
mul-associates, 
minus-add, 
minus-minus, 
le_functionality, 
le_weakening, 
int-triangle-inequality, 
nat_plus_inc_int_nzero, 
add-zero, 
absval_sym, 
sq_stable__all, 
sq_stable__le, 
le_witness_for_triv, 
mul_preserves_le, 
add_functionality_wrt_le, 
exp-positive, 
mul-swap, 
add_functionality_wrt_eq, 
absval_pos, 
mul-commutes, 
nat_plus_subtype_nat, 
exp-positive-stronger, 
mul-distributes, 
one-mul, 
multiply-is-int-iff, 
multiply_functionality_wrt_le, 
absval_unfold, 
lt_int_wf, 
assert_of_lt_int, 
istype-top, 
iff_weakening_uiff, 
assert_wf, 
efficient-exp-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
voidElimination, 
hypothesis_subsumption, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
universeIsType, 
closedConclusion, 
isectIsTypeImplies, 
applyEquality, 
callbyvalueReduce, 
setEquality, 
functionEquality, 
multiplyEquality, 
addEquality, 
divideEquality, 
baseClosed, 
sqequalBase, 
imageMemberEquality, 
functionIsType, 
imageElimination, 
universeEquality, 
minusEquality, 
applyLambdaEquality, 
setIsType, 
pointwiseFunctionality, 
baseApply, 
remainderEquality, 
functionIsTypeImplies, 
lessCases, 
axiomSqEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}k  =  if  (k  =\msubz{}  0)  then  r1  else  x  *  x\^{}k  -  1  fi  )
Date html generated:
2019_10_29-AM-09_34_33
Last ObjectModification:
2019_01_31-PM-09_59_48
Theory : reals
Home
Index