Nuprl Lemma : rprod-rsub-symmetry
∀n,m:ℤ. ∀x,y:{n..m + 1-} ⟶ ℝ.
  rprod(n;m;k.x[k] - y[k]) = (r(-1)^(m - n) + 1 * rprod(n;m;k.y[k] - x[k])) supposing n ≤ m
Proof
Definitions occuring in Statement : 
rprod: rprod(n;m;k.x[k])
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rprod_functionality, 
rsub_wf, 
int_seg_wf, 
rminus_wf, 
istype-le, 
real_wf, 
istype-int, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
istype-less_than, 
itermSubtract_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rprod_wf, 
rmul_wf, 
rnexp_wf, 
subtract_wf, 
int_term_value_subtract_lemma, 
int-to-real_wf, 
rprod-rminus, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
req_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
functionIsType, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
productElimination, 
minusEquality
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    rprod(n;m;k.x[k]  -  y[k])  =  (r(-1)\^{}(m  -  n)  +  1  *  rprod(n;m;k.y[k]  -  x[k]))  supposing  n  \mleq{}  m
Date html generated:
2019_10_29-AM-10_18_08
Last ObjectModification:
2019_01_15-PM-01_31_46
Theory : reals
Home
Index