Nuprl Lemma : rprod-rsub-symmetry

n,m:ℤ. ∀x,y:{n..m 1-} ⟶ ℝ.
  rprod(n;m;k.x[k] y[k]) (r(-1)^(m n) rprod(n;m;k.y[k] x[k])) supposing n ≤ m


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rnexp: x^k1 rsub: y req: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] subtract: m add: m minus: -n natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] implies:  Q int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) nat: req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rprod_functionality rsub_wf int_seg_wf rminus_wf istype-le real_wf istype-int decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma istype-less_than itermSubtract_wf itermMinus_wf req-iff-rsub-is-0 rprod_wf rmul_wf rnexp_wf subtract_wf int_term_value_subtract_lemma int-to-real_wf rprod-rminus real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma real_term_value_const_lemma req_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality_alt applyEquality hypothesisEquality hypothesis universeIsType addEquality natural_numberEquality independent_isectElimination functionIsType inhabitedIsType dependent_set_memberEquality_alt independent_pairFormation dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType productElimination minusEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    rprod(n;m;k.x[k]  -  y[k])  =  (r(-1)\^{}(m  -  n)  +  1  *  rprod(n;m;k.y[k]  -  x[k]))  supposing  n  \mleq{}  m



Date html generated: 2019_10_29-AM-10_18_08
Last ObjectModification: 2019_01_15-PM-01_31_46

Theory : reals


Home Index