Nuprl Lemma : rsum-telescopes2
∀[n:ℤ]. ∀[m:{n...}]. ∀[x,y:{n..m + 1-} ⟶ ℝ].
  Σ{x[k] - y[k] | n≤k≤m} = (x[n] - y[m]) supposing ∀i:{n..m-}. (x[i + 1] = y[i])
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
rsub: x - y
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
uiff_transitivity, 
rminus-rminus, 
radd_functionality, 
radd_comm, 
le_wf, 
radd_wf, 
rsum_functionality, 
rminus_functionality, 
req_functionality, 
req_weakening, 
int_upper_wf, 
real_wf, 
add-subtract-cancel, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
add-member-int_seg2, 
req_wf, 
all_wf, 
lelt_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_upper_properties, 
rsub_wf, 
rsum_wf, 
req_witness, 
int_seg_wf, 
rminus_wf, 
rsum-telescopes
Rules used in proof : 
impliesLevelFunctionality, 
levelHypothesis, 
impliesFunctionality, 
addLevel, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
addEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[m:\{n...\}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    \mSigma{}\{x[k]  -  y[k]  |  n\mleq{}k\mleq{}m\}  =  (x[n]  -  y[m])  supposing  \mforall{}i:\{n..m\msupminus{}\}.  (x[i  +  1]  =  y[i])
Date html generated:
2016_11_08-AM-09_00_22
Last ObjectModification:
2016_11_05-PM-07_18_17
Theory : reals
Home
Index