Nuprl Lemma : rsum-telescopes2

[n:ℤ]. ∀[m:{n...}]. ∀[x,y:{n..m 1-} ⟶ ℝ].
  Σ{x[k] y[k] n≤k≤m} (x[n] y[m]) supposing ∀i:{n..m-}. (x[i 1] y[i])


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rsub: y req: y real: int_upper: {i...} int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  rsub: y pointwise-req: x[k] y[k] for k ∈ [n,m] rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} all: x:A. B[x] int_upper: {i...} so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  uiff_transitivity rminus-rminus radd_functionality radd_comm le_wf radd_wf rsum_functionality rminus_functionality req_functionality req_weakening int_upper_wf real_wf add-subtract-cancel int_term_value_subtract_lemma itermSubtract_wf subtract_wf add-member-int_seg2 req_wf all_wf lelt_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf intformless_wf intformand_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le int_upper_properties rsub_wf rsum_wf req_witness int_seg_wf rminus_wf rsum-telescopes
Rules used in proof :  impliesLevelFunctionality levelHypothesis impliesFunctionality addLevel functionEquality equalitySymmetry equalityTransitivity productElimination independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality lambdaFormation independent_isectElimination natural_numberEquality hypothesis because_Cache rename setElimination addEquality functionExtensionality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[m:\{n...\}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    \mSigma{}\{x[k]  -  y[k]  |  n\mleq{}k\mleq{}m\}  =  (x[n]  -  y[m])  supposing  \mforall{}i:\{n..m\msupminus{}\}.  (x[i  +  1]  =  y[i])



Date html generated: 2016_11_08-AM-09_00_22
Last ObjectModification: 2016_11_05-PM-07_18_17

Theory : reals


Home Index