Nuprl Lemma : separated-partitions-have-common-refinement

I:Interval
  ∀P,Q:partition(I).
    (separated-partitions(P;Q)  (∃R:partition(I). (frs-increasing(R) ∧ frs-refines(R;P) ∧ frs-refines(R;Q)))) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  separated-partitions: separated-partitions(P;Q) partition: partition(I) frs-increasing: frs-increasing(p) frs-refines: frs-refines(p;q) icompact: icompact(I) interval: Interval uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  bfalse: ff cons: [a b] btrue: tt ifthenelse: if then else fi  assert: b last: last(L) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T less_than: a < b decidable: Dec(P) rbetween: x≤y≤z guard: {T} or: P ∨ Q icompact: icompact(I) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) frs-refines: frs-refines(p;q) separated-partitions: separated-partitions(P;Q) cand: c∧ B prop: uall: [x:A]. B[x] partitions: partitions(I;p) and: P ∧ Q exists: x:A. B[x] partition: partition(I) member: t ∈ T implies:  Q uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  right-endpoint_wf length_of_cons_lemma null_cons_lemma product_subtype_list length_of_nil_lemma null_nil_lemma list-cases last_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf decidable__le i-member-compact member_append i-member_wf l_all_iff partition-point-member req_weakening rleq_functionality left-endpoint_wf select_wf req_wf l_member_wf append_wf l_exists_iff lelt_wf false_wf real_wf length_wf less_than_wf interval_wf icompact_wf partition_wf separated-partitions_wf frs-refines_wf frs-increasing_wf partitions_wf frs-increasing-non-dec frs-increasing-separated-common-refinement
Rules used in proof :  hypothesis_subsumption promote_hyp voidEquality voidElimination isect_memberEquality intEquality int_eqEquality approximateComputation imageElimination unionElimination setEquality lambdaEquality sqequalRule natural_numberEquality productEquality independent_isectElimination because_Cache isectElimination independent_pairFormation dependent_set_memberEquality dependent_pairFormation productElimination independent_functionElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}I:Interval
    \mforall{}P,Q:partition(I).
        (separated-partitions(P;Q)
        {}\mRightarrow{}  (\mexists{}R:partition(I).  (frs-increasing(R)  \mwedge{}  frs-refines(R;P)  \mwedge{}  frs-refines(R;Q)))) 
    supposing  icompact(I)



Date html generated: 2018_05_22-PM-02_21_54
Last ObjectModification: 2018_05_21-AM-00_41_51

Theory : reals


Home Index