Nuprl Lemma : separated-partitions-have-common-refinement
∀I:Interval
  ∀P,Q:partition(I).
    (separated-partitions(P;Q) 
⇒ (∃R:partition(I). (frs-increasing(R) ∧ frs-refines(R;P) ∧ frs-refines(R;Q)))) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
separated-partitions: separated-partitions(P;Q)
, 
partition: partition(I)
, 
frs-increasing: frs-increasing(p)
, 
frs-refines: frs-refines(p;q)
, 
icompact: icompact(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
bfalse: ff
, 
cons: [a / b]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
last: last(L)
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
squash: ↓T
, 
less_than: a < b
, 
decidable: Dec(P)
, 
rbetween: x≤y≤z
, 
guard: {T}
, 
or: P ∨ Q
, 
icompact: icompact(I)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
l_all: (∀x∈L.P[x])
, 
frs-refines: frs-refines(p;q)
, 
separated-partitions: separated-partitions(P;Q)
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
partitions: partitions(I;p)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
partition: partition(I)
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
right-endpoint_wf, 
length_of_cons_lemma, 
null_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
null_nil_lemma, 
list-cases, 
last_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
subtract_wf, 
decidable__le, 
i-member-compact, 
member_append, 
i-member_wf, 
l_all_iff, 
partition-point-member, 
req_weakening, 
rleq_functionality, 
left-endpoint_wf, 
select_wf, 
req_wf, 
l_member_wf, 
append_wf, 
l_exists_iff, 
lelt_wf, 
false_wf, 
real_wf, 
length_wf, 
less_than_wf, 
interval_wf, 
icompact_wf, 
partition_wf, 
separated-partitions_wf, 
frs-refines_wf, 
frs-increasing_wf, 
partitions_wf, 
frs-increasing-non-dec, 
frs-increasing-separated-common-refinement
Rules used in proof : 
hypothesis_subsumption, 
promote_hyp, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
imageElimination, 
unionElimination, 
setEquality, 
lambdaEquality, 
sqequalRule, 
natural_numberEquality, 
productEquality, 
independent_isectElimination, 
because_Cache, 
isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_pairFormation, 
productElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I:Interval
    \mforall{}P,Q:partition(I).
        (separated-partitions(P;Q)
        {}\mRightarrow{}  (\mexists{}R:partition(I).  (frs-increasing(R)  \mwedge{}  frs-refines(R;P)  \mwedge{}  frs-refines(R;Q)))) 
    supposing  icompact(I)
Date html generated:
2018_05_22-PM-02_21_54
Last ObjectModification:
2018_05_21-AM-00_41_51
Theory : reals
Home
Index