Nuprl Lemma : series-diverges-rmul
∀[x:ℕ ⟶ ℝ]. (Σn.x[n]↑ 
⇒ (∀c:ℝ. (c ≠ r0 
⇒ Σn.c * x[n]↑)))
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
rneq: x ≠ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
series-diverges: Σn.x[n]↑
, 
diverges: n.x[n]↑
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
real: ℝ
Lemmas referenced : 
rmul_wf, 
rabs_wf, 
nat_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
exists_wf, 
le_wf, 
rleq_wf, 
rsub_wf, 
rsum_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
rneq_wf, 
real_wf, 
series-diverges_wf, 
rmul-is-positive, 
rabs-neq-zero, 
rleq_functionality, 
req_weakening, 
rabs_functionality, 
rsub_functionality, 
rsum_linearity2, 
equal_wf, 
radd_wf, 
rminus_wf, 
req_functionality, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
rabs-rmul, 
rmul_preserves_rleq2, 
zero-rleq-rabs, 
less_than'_wf, 
nat_plus_wf, 
rmul_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
addEquality, 
independent_isectElimination, 
functionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
inlFormation, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
impliesFunctionality, 
independent_pairEquality, 
voidElimination, 
minusEquality, 
axiomEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (\mSigma{}n.x[n]\muparrow{}  {}\mRightarrow{}  (\mforall{}c:\mBbbR{}.  (c  \mneq{}  r0  {}\mRightarrow{}  \mSigma{}n.c  *  x[n]\muparrow{})))
Date html generated:
2017_10_03-AM-09_18_52
Last ObjectModification:
2017_07_28-AM-07_44_07
Theory : reals
Home
Index