Nuprl Lemma : series-diverges-rmul
∀[x:ℕ ⟶ ℝ]. (Σn.x[n]↑
⇒ (∀c:ℝ. (c ≠ r0
⇒ Σn.c * x[n]↑)))
Proof
Definitions occuring in Statement :
series-diverges: Σn.x[n]↑
,
rneq: x ≠ y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
series-diverges: Σn.x[n]↑
,
diverges: n.x[n]↑
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
cand: A c∧ B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rsub: x - y
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
real: ℝ
Lemmas referenced :
rmul_wf,
rabs_wf,
nat_wf,
rless_wf,
int-to-real_wf,
all_wf,
exists_wf,
le_wf,
rleq_wf,
rsub_wf,
rsum_wf,
int_seg_subtype_nat,
false_wf,
int_seg_wf,
rneq_wf,
real_wf,
series-diverges_wf,
rmul-is-positive,
rabs-neq-zero,
rleq_functionality,
req_weakening,
rabs_functionality,
rsub_functionality,
rsum_linearity2,
equal_wf,
radd_wf,
rminus_wf,
req_functionality,
req_transitivity,
rmul-distrib,
radd_functionality,
rmul_over_rminus,
rabs-rmul,
rmul_preserves_rleq2,
zero-rleq-rabs,
less_than'_wf,
nat_plus_wf,
rmul_comm
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation,
cut,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
independent_pairFormation,
productEquality,
natural_numberEquality,
sqequalRule,
lambdaEquality,
because_Cache,
setElimination,
rename,
applyEquality,
functionExtensionality,
addEquality,
independent_isectElimination,
functionEquality,
dependent_functionElimination,
independent_functionElimination,
inlFormation,
promote_hyp,
equalityTransitivity,
equalitySymmetry,
addLevel,
impliesFunctionality,
independent_pairEquality,
voidElimination,
minusEquality,
axiomEquality
Latex:
\mforall{}[x:\mBbbN{} {}\mrightarrow{} \mBbbR{}]. (\mSigma{}n.x[n]\muparrow{} {}\mRightarrow{} (\mforall{}c:\mBbbR{}. (c \mneq{} r0 {}\mRightarrow{} \mSigma{}n.c * x[n]\muparrow{})))
Date html generated:
2017_10_03-AM-09_18_52
Last ObjectModification:
2017_07_28-AM-07_44_07
Theory : reals
Home
Index