Nuprl Lemma : series-diverges-rmul

[x:ℕ ⟶ ℝ]. n.x[n]↑  (∀c:ℝ(c ≠ r0  Σn.c x[n]↑)))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ rneq: x ≠ y rmul: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] series-diverges: Σn.x[n]↑ diverges: n.x[n]↑ exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rsub: y rleq: x ≤ y rnonneg: rnonneg(x) real:
Lemmas referenced :  rmul_wf rabs_wf nat_wf rless_wf int-to-real_wf all_wf exists_wf le_wf rleq_wf rsub_wf rsum_wf int_seg_subtype_nat false_wf int_seg_wf rneq_wf real_wf series-diverges_wf rmul-is-positive rabs-neq-zero rleq_functionality req_weakening rabs_functionality rsub_functionality rsum_linearity2 equal_wf radd_wf rminus_wf req_functionality req_transitivity rmul-distrib radd_functionality rmul_over_rminus rabs-rmul rmul_preserves_rleq2 zero-rleq-rabs less_than'_wf nat_plus_wf rmul_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis independent_pairFormation productEquality natural_numberEquality sqequalRule lambdaEquality because_Cache setElimination rename applyEquality functionExtensionality addEquality independent_isectElimination functionEquality dependent_functionElimination independent_functionElimination inlFormation promote_hyp equalityTransitivity equalitySymmetry addLevel impliesFunctionality independent_pairEquality voidElimination minusEquality axiomEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (\mSigma{}n.x[n]\muparrow{}  {}\mRightarrow{}  (\mforall{}c:\mBbbR{}.  (c  \mneq{}  r0  {}\mRightarrow{}  \mSigma{}n.c  *  x[n]\muparrow{})))



Date html generated: 2017_10_03-AM-09_18_52
Last ObjectModification: 2017_07_28-AM-07_44_07

Theory : reals


Home Index