Nuprl Lemma : sq_stable_double_ex_rneq

m,n:ℕ. ∀a,b:ℕm ⟶ ℕn ⟶ ℝ.  SqStable(∃i:ℕm. ∃j:ℕn. a[i;j] ≠ b[i;j])


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: int_seg: {i..j-} nat: sq_stable: SqStable(P) so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s1;s2] uall: [x:A]. B[x] nat: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: le: A ≤ B less_than: a < b pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} nat_plus: +
Lemmas referenced :  exists-rneq-iff int_seg_wf rless_wf int-to-real_wf rsum_wf subtract_wf rabs_wf rsub_wf subtract-add-cancel int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf rsum-of-nonneg-positive-iff rsum_nonneg zero-rleq-rabs intformle_wf itermSubtract_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma le_wf exists_wf rneq_wf squash_wf real_wf nat_wf sq_stable__rless nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis addLevel sqequalHypSubstitution imageElimination introduction existsFunctionality extract_by_obid dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality isectElimination natural_numberEquality setElimination rename because_Cache productElimination independent_functionElimination dependent_set_memberEquality independent_pairFormation unionElimination independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality imageMemberEquality baseClosed levelHypothesis promote_hyp functionEquality

Latex:
\mforall{}m,n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.    SqStable(\mexists{}i:\mBbbN{}m.  \mexists{}j:\mBbbN{}n.  a[i;j]  \mneq{}  b[i;j])



Date html generated: 2017_10_03-AM-09_00_51
Last ObjectModification: 2017_06_16-PM-00_07_06

Theory : reals


Home Index