Nuprl Lemma : subsequence-converges

a:ℝ. ∀x,y:ℕ ⟶ ℝ.
  ((∃N:ℕ. ∀n:ℕ. ∃m:ℕ((n ≤ m) ∧ (y[n] x[m])) supposing N ≤ n)  lim n→∞.x[n]  lim n→∞.y[n] a)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y real: nat: uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T sq_exists: x:{A| B[x]} uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: nat: so_apply: x[s] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  exists: x:A. B[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sq_stable__all nat_wf le_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf sq_stable__rleq less_than'_wf squash_wf nat_plus_wf converges-to_wf exists_wf all_wf isect_wf req_wf real_wf imax_wf imax_nat decidable__le intformle_wf intformeq_wf int_formula_prop_le_lemma int_formula_prop_eq_lemma equal_wf imax_lb rleq_functionality rabs_functionality rsub_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality setElimination rename introduction extract_by_obid isectElimination sqequalRule lambdaEquality functionEquality because_Cache applyEquality functionExtensionality natural_numberEquality independent_isectElimination inrFormation productElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination productEquality dependent_set_memberFormation dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mexists{}N:\mBbbN{}.  \mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  ((n  \mleq{}  m)  \mwedge{}  (y[n]  =  x[m]))  supposing  N  \mleq{}  n)
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  a
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)



Date html generated: 2017_10_03-AM-08_54_11
Last ObjectModification: 2017_07_28-AM-07_36_12

Theory : reals


Home Index