Nuprl Lemma : integration-by-parts
∀I:Interval. ∀u,v,h:I ⟶ℝ. ∀u',v':{h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) ⇒ ((h x) = (h y)))} .
  (d(u[t])/dt = λt.u'[t] on I
  ⇒ d(v[t])/dt = λt.v'[t] on I
  ⇒ d(h[t])/dt = λt.u'[t] * v[t] on I
  ⇒ d((u[t] * v[t]) - h[t])/dt = λt.u[t] * v'[t] on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
uimplies: b supposing a, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
rsub: x - y, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
derivative_wf, 
i-member_wf, 
real_wf, 
rmul_wf, 
set_wf, 
rfun_wf, 
all_wf, 
req_wf, 
interval_wf, 
radd_wf, 
req_witness, 
rsub_wf, 
req_weakening, 
rminus_wf, 
derivative-sub, 
derivative-mul, 
derivative_functionality, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rmul_comm, 
req_inversion, 
radd-assoc, 
req_transitivity, 
radd-ac, 
radd_comm, 
radd-rminus-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
setEquality, 
because_Cache, 
functionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}I:Interval.  \mforall{}u,v,h:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}u',v':\{h:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((h  x)  =  (h  y)))\}  .
    (d(u[t])/dt  =  \mlambda{}t.u'[t]  on  I
    {}\mRightarrow{}  d(v[t])/dt  =  \mlambda{}t.v'[t]  on  I
    {}\mRightarrow{}  d(h[t])/dt  =  \mlambda{}t.u'[t]  *  v[t]  on  I
    {}\mRightarrow{}  d((u[t]  *  v[t])  -  h[t])/dt  =  \mlambda{}t.u[t]  *  v'[t]  on  I)
Date html generated:
2017_10_04-PM-10_54_02
Last ObjectModification:
2017_07_28-AM-08_52_07
Theory : reals_2
Home
Index