Nuprl Lemma : sinh0

sinh(r0) r0


Proof




Definitions occuring in Statement :  sinh: sinh(x) req: y int-to-real: r(n) natural_number: $n
Definitions unfolded in proof :  sinh: sinh(x) member: t ∈ T uall: [x:A]. B[x] int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf rsub_wf expr_wf int-to-real_wf real_wf req_wf rexp_wf rminus_wf radd_wf itermSubtract_wf itermVar_wf itermAdd_wf itermMinus_wf req-iff-rsub-is-0 rminus-zero radd-rminus req_functionality int-rdiv_functionality rsub_functionality expr-req req_weakening req_transitivity radd_functionality rminus_functionality rexp_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma rdiv_wf rless-int rless_wf req-int-fractions2 less_than_wf decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf int-rdiv-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed hypothesisEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule because_Cache productElimination approximateComputation int_eqEquality isect_memberEquality voidEquality inrFormation independent_pairFormation imageMemberEquality unionElimination dependent_pairFormation

Latex:
sinh(r0)  =  r0



Date html generated: 2017_10_04-PM-10_40_17
Last ObjectModification: 2017_06_21-PM-02_34_40

Theory : reals_2


Home Index