Nuprl Lemma : sinh0
sinh(r0) = r0
Proof
Definitions occuring in Statement : 
sinh: sinh(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
sinh: sinh(x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
rsub_wf, 
expr_wf, 
int-to-real_wf, 
real_wf, 
req_wf, 
rexp_wf, 
rminus_wf, 
radd_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rminus-zero, 
radd-rminus, 
req_functionality, 
int-rdiv_functionality, 
rsub_functionality, 
expr-req, 
req_weakening, 
req_transitivity, 
radd_functionality, 
rminus_functionality, 
rexp_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
rdiv_wf, 
rless-int, 
rless_wf, 
req-int-fractions2, 
less_than_wf, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
int-rdiv-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
addLevel, 
lambdaFormation, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
because_Cache, 
productElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
inrFormation, 
independent_pairFormation, 
imageMemberEquality, 
unionElimination, 
dependent_pairFormation
Latex:
sinh(r0)  =  r0
Date html generated:
2017_10_04-PM-10_40_17
Last ObjectModification:
2017_06_21-PM-02_34_40
Theory : reals_2
Home
Index