Nuprl Lemma : C_Array_vs_DVALp
∀store:C_STOREp(). ∀ctyp:C_TYPE(). ∀env:C_TYPE_env(). ∀dval:C_DVALUEp().
  (C_STOREp-welltyped(env;store)
  ⇒ (↑C_Array?(ctyp))
  ⇒ C_TYPE_vs_DVALp(env;ctyp) dval 
     = if DVp_Array?(dval)
       then let a = DVp_Array-lower(dval) in
             let b = DVp_Array-upper(dval) in
             let f = DVp_Array-arr(dval) in
             (C_Array-length(ctyp) =z b - a)
             ∧b (∀i∈upto(C_Array-length(ctyp)).C_TYPE_vs_DVALp(env;C_Array-elems(ctyp)) (f (a + i)))_b
       else ff
       fi )
Proof
Definitions occuring in Statement : 
C_STOREp-welltyped: C_STOREp-welltyped(env;store), 
C_STOREp: C_STOREp(), 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
DVp_Array-arr: DVp_Array-arr(v), 
DVp_Array-upper: DVp_Array-upper(v), 
DVp_Array-lower: DVp_Array-lower(v), 
DVp_Array?: DVp_Array?(v), 
C_DVALUEp: C_DVALUEp(), 
C_TYPE_env: C_TYPE_env(), 
C_Array-elems: C_Array-elems(v), 
C_Array-length: C_Array-length(v), 
C_Array?: C_Array?(v), 
C_TYPE: C_TYPE(), 
bl-all: (∀x∈L.P[x])_b, 
upto: upto(n), 
band: p ∧b q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
bool: 𝔹, 
let: let, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
subtract: n - m, 
add: n + m, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
let: let, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
band: p ∧b q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
so_apply: x[s], 
bfalse: ff, 
C_Void: C_Void(), 
C_Array?: C_Array?(v), 
pi1: fst(t), 
C_Array-length: C_Array-length(v), 
pi2: snd(t), 
C_Array-elems: C_Array-elems(v), 
eq_atom: x =a y, 
assert: ↑b, 
C_Int: C_Int(), 
C_Struct: C_Struct(fields), 
C_Array: C_Array(length;elems), 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
C_TYPE_ind: C_TYPE_ind, 
ge: i ≥ j , 
C_Pointer: C_Pointer(to), 
guard: {T}
Lemmas referenced : 
C_STOREp_wf, 
true_wf, 
nat_properties, 
list_wf, 
l_all_wf2, 
C_TYPE_wf, 
lelt_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
intformeq_wf, 
intformless_wf, 
decidable__lt, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract-is-int-iff, 
decidable__le, 
add-member-int_seg1, 
DVp_Array-arr_wf, 
C_Array-elems_wf, 
l_member_wf, 
upto_wf, 
int_seg_wf, 
bl-all_wf, 
assert_of_eq_int, 
DVp_Array-lower_wf, 
DVp_Array-upper_wf, 
subtract_wf, 
nat_wf, 
C_Array-length_wf, 
eq_int_wf, 
eqtt_to_assert, 
DVp_Array?_wf, 
C_TYPE_vs_DVALp_wf, 
bool_wf, 
C_Array?_wf, 
assert_wf, 
C_STOREp-welltyped_wf, 
C_DVALUEp_wf, 
C_TYPE_env_wf, 
all_wf, 
C_TYPE-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
hypothesis, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
equalityEquality, 
applyEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
setEquality, 
independent_functionElimination, 
productEquality, 
atomEquality, 
independent_pairEquality, 
introduction
Latex:
\mforall{}store:C\_STOREp().  \mforall{}ctyp:C\_TYPE().  \mforall{}env:C\_TYPE\_env().  \mforall{}dval:C\_DVALUEp().
    (C\_STOREp-welltyped(env;store)
    {}\mRightarrow{}  (\muparrow{}C\_Array?(ctyp))
    {}\mRightarrow{}  C\_TYPE\_vs\_DVALp(env;ctyp)  dval 
          =  if  DVp\_Array?(dval)
              then  let  a  =  DVp\_Array-lower(dval)  in
                          let  b  =  DVp\_Array-upper(dval)  in
                          let  f  =  DVp\_Array-arr(dval)  in
                          (C\_Array-length(ctyp)  =\msubz{}  b  -  a)
                          \mwedge{}\msubb{}  (\mforall{}i\mmember{}upto(C\_Array-length(ctyp)).C\_TYPE\_vs\_DVALp(env;C\_Array-elems(ctyp)) 
                                                                                              (f  (a  +  i)))\_b
              else  ff
              fi  )
Date html generated:
2016_05_16-AM-08_51_33
Last ObjectModification:
2016_01_17-AM-09_43_34
Theory : C-semantics
Home
Index