Nuprl Lemma : C_LVALUE-induction

[P:C_LVALUE() ⟶ ℙ]
  ((∀loc:C_LOCATION(). P[LV_Ground(loc)])
   (∀lval:C_LVALUE(). ∀idx:ℤ.  (P[lval]  P[LV_Index(lval;idx)]))
   (∀lval:C_LVALUE(). ∀comp:Atom.  (P[lval]  P[LV_Scomp(lval;comp)]))
   {∀v:C_LVALUE(). P[v]})


Proof




Definitions occuring in Statement :  LV_Scomp: LV_Scomp(lval;comp) LV_Index: LV_Index(lval;idx) LV_Ground: LV_Ground(loc) C_LVALUE: C_LVALUE() C_LOCATION: C_LOCATION() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int: atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  LV_Ground: LV_Ground(loc) C_LVALUE_size: C_LVALUE_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b LV_Index: LV_Index(lval;idx) cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T LV_Scomp: LV_Scomp(lval;comp)
Lemmas referenced :  LV_Ground_wf C_LOCATION_wf LV_Index_wf LV_Scomp_wf int_seg_wf uall_wf lelt_wf int_term_value_subtract_lemma itermSubtract_wf decidable__le subtract_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties neg_assert_of_eq_atom assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert atom_subtype_base subtype_base_sq assert_of_eq_atom eqtt_to_assert bool_wf eq_atom_wf C_LVALUE-ext less_than'_wf nat_wf C_LVALUE_size_wf le_wf isect_wf C_LVALUE_wf all_wf uniform-comp-nat-induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis hypothesisEquality applyEquality because_Cache setElimination rename independent_functionElimination introduction productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate cumulativity atomEquality dependent_pairFormation setEquality intEquality natural_numberEquality int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll dependent_set_memberEquality imageElimination equalityEquality functionEquality universeEquality

Latex:
\mforall{}[P:C\_LVALUE()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}loc:C\_LOCATION().  P[LV\_Ground(loc)])
    {}\mRightarrow{}  (\mforall{}lval:C\_LVALUE().  \mforall{}idx:\mBbbZ{}.    (P[lval]  {}\mRightarrow{}  P[LV\_Index(lval;idx)]))
    {}\mRightarrow{}  (\mforall{}lval:C\_LVALUE().  \mforall{}comp:Atom.    (P[lval]  {}\mRightarrow{}  P[LV\_Scomp(lval;comp)]))
    {}\mRightarrow{}  \{\mforall{}v:C\_LVALUE().  P[v]\})



Date html generated: 2016_05_16-AM-08_47_37
Last ObjectModification: 2016_01_17-AM-09_43_29

Theory : C-semantics


Home Index