Nuprl Lemma : coPath-at_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[p:coPath(a.B[a];w;n)].  (coPath-at(n;w;p) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] coPath-at: coPath-at(n;w;p) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A all: x:A. B[x] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b coPath: coPath(a.B[a];w;n) nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf coPath_wf istype-universe coW_wf istype-false le_wf subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int le_weakening2 nat_wf assert_wf bnot_wf not_wf equal-wf-base coW-item_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry applyEquality instantiate cumulativity Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  independent_pairFormation because_Cache unionElimination equalityElimination productElimination Error :dependent_pairFormation_alt,  Error :equalityIsType2,  baseApply closedConclusion baseClosed promote_hyp Error :equalityIsType1,  Error :functionIsType,  universeEquality intEquality Error :equalityIsType4

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:coPath(a.B[a];w;n)].
    (coPath-at(n;w;p)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_56_17
Last ObjectModification: 2019_01_02-PM-01_33_06

Theory : co-recursion-2


Home Index