Nuprl Lemma : coPath-at_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[p:coPath(a.B[a];w;n)].  (coPath-at(n;w;p) ∈ coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
coPath-at: coPath-at(n;w;p), 
coPath: coPath(a.B[a];w;n), 
coW: coW(A;a.B[a]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
coPath-at: coPath-at(n;w;p), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
coPath: coPath(a.B[a];w;n), 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
coPath_wf, 
istype-universe, 
coW_wf, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
le_weakening2, 
nat_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
coW-item_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
cumulativity, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
Error :equalityIsType1, 
Error :functionIsType, 
universeEquality, 
intEquality, 
Error :equalityIsType4
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:coPath(a.B[a];w;n)].
    (coPath-at(n;w;p)  \mmember{}  coW(A;a.B[a]))
Date html generated:
2019_06_20-PM-00_56_17
Last ObjectModification:
2019_01_02-PM-01_33_06
Theory : co-recursion-2
Home
Index