Nuprl Lemma : W-path-lemma
∀A:Type. ∀B:A ⟶ Type. ∀x:W(A;a.B[a]). ∀alpha:ℕ ⟶ cw-step(A;a.B[a]).
  ((∀n:ℕ. (W-rel(A;a.B[a];x) n alpha (alpha n))) 
⇒ (alpha ∈ Path))
Proof
Definitions occuring in Statement : 
W-rel: W-rel(A;a.B[a];w)
, 
W: W(A;a.B[a])
, 
cw-step: cw-step(A;a.B[a])
, 
pcw-path: Path
, 
nat: ℕ
, 
it: ⋅
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
pcw-path: Path
, 
cw-step: cw-step(A;a.B[a])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
top: Top
, 
true: True
, 
prop: ℙ
, 
W-rel: W-rel(A;a.B[a];w)
, 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
pi2: snd(t)
, 
isl: isl(x)
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
W: W(A;a.B[a])
Lemmas referenced : 
nat_wf, 
W-rel_wf, 
istype-universe, 
subtype_rel_function, 
cw-step_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-void, 
subtype_rel_self, 
W_wf, 
pcw-step_wf, 
unit_wf2, 
it_wf, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
add-subtract-cancel, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
assert_wf, 
btrue_wf, 
bfalse_wf, 
pcw-steprel_wf, 
le_weakening2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
less_than_wf, 
not-lt-2, 
pcw-step-agree_wf, 
subtype_rel-equal, 
param-W_wf, 
param-co-W_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
applyEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
Error :inhabitedIsType, 
universeEquality, 
Error :dependent_set_memberEquality_alt, 
functionExtensionality, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
voidElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :isect_memberEquality_alt, 
minusEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :productIsType, 
Error :equalityIsType1, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}x:W(A;a.B[a]).  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  cw-step(A;a.B[a]).
    ((\mforall{}n:\mBbbN{}.  (W-rel(A;a.B[a];x)  n  alpha  (alpha  n)))  {}\mRightarrow{}  (alpha  \mmember{}  Path))
Date html generated:
2019_06_20-PM-00_36_24
Last ObjectModification:
2018_10_06-AM-11_20_32
Theory : co-recursion
Home
Index